43,806 research outputs found

    Bipedal steps in the development of rhythmic behavior in humans

    No full text
    We contrast two related hypotheses of the evolution of dance: H1: Maternal bipedal walking influenced the fetal experience of sound and associated movement patterns; H2: The human transition to bipedal gait produced more isochronous/predictable locomotion sound resulting in early music-like behavior associated with the acoustic advantages conferred by moving bipedally in pace. The cadence of walking is around 120 beats per minute, similar to the tempo of dance and music. Human walking displays long-term constancies. Dyads often subconsciously synchronize steps. The major amplitude component of the step is a distinctly produced beat. Human locomotion influences, and interacts with, emotions, and passive listening to music activates brain motor areas. Across dance-genres the footwork is most often performed in time to the musical beat. Brain development is largely shaped by early sensory experience, with hearing developed from week 18 of gestation. Newborns reacts to sounds, melodies, and rhythmic poems to which they have been exposed in utero. If the sound and vibrations produced by footfalls of a walking mother are transmitted to the fetus in coordination with the cadence of the motion, a connection between isochronous sound and rhythmical movement may be developed. Rhythmical sounds of the human mother locomotion differ substantially from that of nonhuman primates, while the maternal heartbeat heard is likely to have a similar isochronous character across primates, suggesting a relatively more influential role of footfall in the development of rhythmic/musical abilities in humans. Associations of gait, music, and dance are numerous. The apparent absence of musical and rhythmic abilities in nonhuman primates, which display little bipedal locomotion, corroborates that bipedal gait may be linked to the development of rhythmic abilities in humans. Bipedal stimuli in utero may primarily boost the ontogenetic development. The acoustical advantage hypothesis proposes a mechanism in the phylogenetic development

    Listeners are sensitive to the speech breathing time series: Evidence from a gap detection task

    Get PDF
    The effect of non-speech sounds, such as breathing noise, on the perception of speech timing is currently unclear. In this paper we report the results of three studies investigating participants' ability to detect a silent gap located adjacent to breath sounds during naturalistic speech. Experiment 1 (n = 24, in-person) asked whether participants could either detect or locate a silent gap that was added adjacent to breath sounds during speech. In Experiment 2 (n = 182; online), we investigated whether different placements within an utterance were more likely to elicit successful detection of gaps. In Experiment 3 (n = 102; online), we manipulated the breath sounds themselves to examine the effect of breath-specific characteristics on gap identification. Across the study, we document consistent effects of gap duration, as well as gap placement. Moreover, in Experiment 2, whether a gap was positioned before or after an interjected breath significantly predicted accuracy as well as the duration threshold at which gaps were detected, suggesting that nonverbal aspects of audible speech production specifically shape listeners' temporal expectations. We also describe the influences of the breath sounds themselves, as well as the surrounding speech context, that can disrupt objective gap detection performance. We conclude by contextualising our findings within the literature, arguing that the verbal acoustic signal is not "speech itself" per se, but rather one part of an integrated percept that includes speech-related respiration, which could be more fully explored in speech perception studies

    Acoustic Intensity and Speech Breathing Kinematics in a Patient with Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disease which affects the basal ganglia control circuit (Duffy, 2013). The motor speech disorder most strongly associated with PD is hypokinetic dysarthria, which presents with distinctive speech characteristics including reduced loudness and the inability to adequately maintain loud speech (Darley, Aronson, & Brown 1969; Duffy 2013). This is due to the variable kinematics for speech breathing associated with PD, which may result in abnormal muscular excursions, reduced vital capacity, and irregular breathing cycles (Duffy, 2013). The impaired ventilatory control can be attributed to the rigidity of muscles of inhalation and exhalation, as well as bradykinesia and hypokinesia. The study aimed to evaluate whether a patient with PD was able to manipulate their acoustic intensity, and if such intensity changes were accompanied by changes in speech breathing kinematics in a novel intraoperative environment. The study’s data were collected intra-operatively during surgery for deep brain stimulation and recordings from the subthalamic nucleus and cortex. The patient was instructed to modulate acoustic intensity while repeating three syllable CV triplets. Speech breathing kinematics of the rib cage were obtained using a Piezo Crystal Effort Sensor with a double buckle band throughout speech production. The speech breathing kinematics of interest were duration, displacement, and peak velocity of inhalation, peak velocity of exhalation, and duration from onset of exhalation to onset of speech, as well as a descriptive comparison between tidal breathing and speech breathing. Spearman Rho correlations indicated that there were weak to no relationships observed between speech breathing kinematics and intensity in this specific participant. However, a medium effect size (Hedge’s g) was observed between tidal and speech breathing for inhalation duration, and small to medium effect size for inhalation displacement and peak velocity. While previous literature suggests that people with PD can manipulate intensity when cued as a result of kinematic modulations for speech breathing, the current study does not support these findings for this one patient. However, previously reported differences between tidal and speech breathing were supported. Potential explanations for the lack of intensity modulation are explored, including constraints induced by the intra-operative environment

    Changes in breathing while listening to read speech: the effect of reader and speech mode

    Get PDF
    International audienceThe current paper extends previous work on breathing during speech perception and provides supplementary material regarding the hypothesis that adaptation of breathing during perception "could be a basis for understanding and imitating actions performed by other people" (Paccalin and Jeannerod, 2000). The experiments were designed to test how the differences in reader breathing due to speaker-specific characteristics, or differences induced by changes in loudness level or speech rate influence the listener breathing. Two readers (a male and a female) were pre-recorded while reading short texts with normal and then loud speech (both readers) or slow speech (female only). These recordings were then played back to 48 female listeners. The movements of the rib cage and abdomen were analyzed for both the readers and the listeners. Breathing profiles were characterized by the movement expansion due to inhalation and the duration of the breathing cycle. We found that both loudness and speech rate affected each reader's breathing in different ways. Listener breathing was different when listening to the male or the female reader and to the different speech modes. However, differences in listener breathing were not systematically in the same direction as reader differences. The breathing of listeners was strongly sensitive to the order of presentation of speech mode and displayed some adaptation in the time course of the experiment in some conditions. In contrast to specific alignments of breathing previously observed in face-to-face dialog, no clear evidence for a listener-reader alignment in breathing was found in this purely auditory speech perception task. The results and methods are relevant to the question of the involvement of physiological adaptations in speech perception and to the basic mechanisms of listener-speaker coupling

    The analysis of breathing and rhythm in speech

    Get PDF
    Speech rhythm can be described as the temporal patterning by which speech events, such as vocalic onsets, occur. Despite efforts to quantify and model speech rhythm across languages, it remains a scientifically enigmatic aspect of prosody. For instance, one challenge lies in determining how to best quantify and analyse speech rhythm. Techniques range from manual phonetic annotation to the automatic extraction of acoustic features. It is currently unclear how closely these differing approaches correspond to one another. Moreover, the primary means of speech rhythm research has been the analysis of the acoustic signal only. Investigations of speech rhythm may instead benefit from a range of complementary measures, including physiological recordings, such as of respiratory effort. This thesis therefore combines acoustic recording with inductive plethysmography (breath belts) to capture temporal characteristics of speech and speech breathing rhythms. The first part examines the performance of existing phonetic and algorithmic techniques for acoustic prosodic analysis in a new corpus of rhythmically diverse English and Mandarin speech. The second part addresses the need for an automatic speech breathing annotation technique by developing a novel function that is robust to the noisy plethysmography typical of spontaneous, naturalistic speech production. These methods are then applied in the following section to the analysis of English speech and speech breathing in a second, larger corpus. Finally, behavioural experiments were conducted to investigate listeners' perception of speech breathing using a novel gap detection task. The thesis establishes the feasibility, as well as limits, of automatic methods in comparison to manual annotation. In the speech breathing corpus analysis, they help show that speakers maintain a normative, yet contextually adaptive breathing style during speech. The perception experiments in turn demonstrate that listeners are sensitive to the violation of these speech breathing norms, even if unconsciously so. The thesis concludes by underscoring breathing as a necessary, yet often overlooked, component in speech rhythm planning and production

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 335)

    Get PDF
    This bibliography lists 143 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during March, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Opioids depress cortical centers responsible for the volitional control of respiration

    Get PDF
    Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 125

    Get PDF
    This special bibliography lists 323 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1974
    corecore