78 research outputs found

    Characterization of Mammogram Using Ensemble Classification Technique for Detection of Breast Cancer

    Get PDF
    Breast cancer is one of the most common known cancers in women today. Just like any other form of cancer an early detection of cancer provides better chances of cure. However, it is an arduous task for the radiologists to detect cancer accurately. Thus computer aided diagnosis of the mammographic images is the most popular medium to aid the radiologists in accurately classifying benign and malignant mammographic lesions. In this thesis an efficient approach is presented to classify the mammographic lesion for the detection of breast cancer. In this approach the extracted feature coefficients are balanced using Gaussian distribution. This distribution balances the class unbalanced dataset providing for better classification. This scheme uses Logit Boost classification technique. Logit Boost uses least squared regression cost function on the additive model of Adaboost. The standard MIAS database was used to obtain the mammographic lesions. With a classification accuracy rate of 99.1% and a performance index value of AUC = 0.98 in receiver operating characteristic (ROC) curve the results are pretty much optimal. These results are very promising when compared with existing methods

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    Texture analysis and Its applications in biomedical imaging: a survey

    Get PDF
    Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This survey’s emphasis is in collecting and categorising over five decades of active research on texture analysis.Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this survey’s final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.Manuscript received February 3, 2021; revised June 23, 2021; accepted September 21, 2021. Date of publication September 27, 2021; date of current version January 24, 2022. This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) under Grants PTDC/EMD-EMD/28039/2017, UIDB/04950/2020, PestUID/NEU/04539/2019, and CENTRO-01-0145-FEDER-000016 and by FEDER-COMPETE under Grant POCI-01-0145-FEDER-028039. (Corresponding author: Rui Bernardes.)info:eu-repo/semantics/publishedVersio

    MACHINE LEARNING-BASED CLASSIFICATION OF BREAST DENSITIES

    Get PDF

    Characterisation of Dynamic Process Systems by Use of Recurrence Texture Analysis

    Get PDF
    This thesis proposes a method to analyse the dynamic behaviour of process systems using sets of textural features extracted from distance matrices obtained from time series data. Algorithms based on the use of grey level co-occurrence matrices, wavelet transforms, local binary patterns, textons, and the pretrained convolutional neural networks (AlexNet and VGG16) were used to extract features. The method was demonstrated to effectively capture the dynamics of mineral process systems and could outperform competing approaches
    corecore