1,860 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Efficient breast cancer classification network with dual squeeze and excitation in histopathological images.

    Get PDF
    Medical image analysis methods for mammograms, ultrasound, and magnetic resonance imaging (MRI) cannot provide the underline features on the cellular level to understand the cancer microenvironment which makes them unsuitable for breast cancer subtype classification study. In this paper, we propose a convolutional neural network (CNN)-based breast cancer classification method for hematoxylin and eosin (H&E) whole slide images (WSIs). The proposed method incorporates fused mobile inverted bottleneck convolutions (FMB-Conv) and mobile inverted bottleneck convolutions (MBConv) with a dual squeeze and excitation (DSE) network to accurately classify breast cancer tissue into binary (benign and malignant) and eight subtypes using histopathology images. For that, a pre-trained EfficientNetV2 network is used as a backbone with a modified DSE block that combines the spatial and channel-wise squeeze and excitation layers to highlight important low-level and high-level abstract features. Our method outperformed ResNet101, InceptionResNetV2, and EfficientNetV2 networks on the publicly available BreakHis dataset for the binary and multi-class breast cancer classification in terms of precision, recall, and F1-score on multiple magnification levels

    Two-Stage Convolutional Neural Network for Breast Cancer Histology Image Classification

    Full text link
    This paper explores the problem of breast tissue classification of microscopy images. Based on the predominant cancer type the goal is to classify images into four categories of normal, benign, in situ carcinoma, and invasive carcinoma. Given a suitable training dataset, we utilize deep learning techniques to address the classification problem. Due to the large size of each image in the training dataset, we propose a patch-based technique which consists of two consecutive convolutional neural networks. The first "patch-wise" network acts as an auto-encoder that extracts the most salient features of image patches while the second "image-wise" network performs classification of the whole image. The first network is pre-trained and aimed at extracting local information while the second network obtains global information of an input image. We trained the networks using the ICIAR 2018 grand challenge on BreAst Cancer Histology (BACH) dataset. The proposed method yields 95 % accuracy on the validation set compared to previously reported 77 % accuracy rates in the literature. Our code is publicly available at https://github.com/ImagingLab/ICIAR2018Comment: 10 pages, 5 figures, ICIAR 2018 conferenc

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page
    corecore