3,256 research outputs found

    Lattice-Based proof of a shuffle

    Get PDF
    In this paper we present the first fully post-quantum proof of a shuffle for RLWE encryption schemes. Shuffles are commonly used to construct mixing networks (mix-nets), a key element to ensure anonymity in many applications such as electronic voting systems. They should preserve anonymity even against an attack using quantum computers in order to guarantee long-term privacy. The proof presented in this paper is built over RLWE commitments which are perfectly binding and computationally hiding under the RLWE assumption, thus achieving security in a post-quantum scenario. Furthermore we provide a new definition for a secure mixing node (mix-node) and prove that our construction satisfies this definition.Peer ReviewedPostprint (author's final draft

    Individual verifiability in electronic voting

    Get PDF
    This PhD Thesis is the fruit of the job of the author as a researcher at Scytl Secure Electronic Voting, as well as the collaboration with Paz Morillo, from the Department of Applied Mathematics at UPC and Alex Escala, PhD student. In her job at Scytl, the author has participated in several electronic voting projects for national-level binding elections in different countries. The participation of the author covered from the protocol design phase, to the implementation phase by providing support to the development teams. The thesis focuses on studying the mechanisms that can be provided to the voters, in order to examine and verify the processes executed in a remote electronic voting system. This work has been done as part of the tasks of the author at the electronic voting company Scytl. Although this thesis does not talk about system implementations, which are interesting by themselves, it is indeed focused on protocols which have had, or may have, an application in the real world. Therefore, it may surprise the reader by not using state of the art cryptography such as pairings or lattices, which still, although providing very interesting properties, cannot be efficiently implemented and used in a real system. Otherwise, the protocols presented in this thesis use standard and well-known cryptographic primitives, while providing new functionalities that can be applied in nowadays electronic voting systems. The thesis has the following contents: A survey on electronic voting systems which provide voter verification functionalities. Among these systems we can find the one used in the Municipal and Parliamentary Norwegian elections of 2011 and 2013, and the system used in the Australian State of New South Wales for the General State Elections in 2015, in which the author has had an active participation in the design of their electronic voting protocols. A syntax which can be used for modeling electronic voting systems providing voter verifiability. This syntax is focused on systems characterized by the voter confirming the casting of her vote, after verifying some evidences provided by the protocol. Along with this syntax, definitions for the security properties required for such schemes are provided. A description of the electronic voting protocol and system which has been used in 2014 and 2015 elections in the Swiss Canton of Neuchâtel, which has individual verification functionalities, is also provided in this thesis, together with a formal analysis of the security properties of the scheme and further extensions of the protocol. Finally, two new protocols which provide new functionalities respect to those from the state of the art are proposed: A new protocol providing individual verifiability which allows voters to defend against coertion by generating fake proofs, and a protocol which makes a twist to individual verifiability by ensuring that all the processes executed by the voting device and the remote server are correct, without requiring an active verification from the voter. A formal analysis of the security properties of both protocols is provided, together with examples of implementation in real systems.Aquesta tesi és fruit de la feina de l'autora com a personal de recerca a la empresa Scytl Secure Electtronic Voting, així com de la col·laboració amb la Paz Morillo, del departament de matemàtica aplicada a la UPC, i el Alex Escala, estudiant de doctorat. A la feina a Scytl, l'autora ha participat a varis projectes de vot electrònic per a eleccions vinculants a nivell nacional, que s'han efectuat a varis països. La participació de la autora ha cobert tant la fase de disseny del protocol, com la fase de implementació, on ha proveït suport als equips de desenvolupament. La tesi estudia els mecanismes que es poden proporcionar als votants per a poder examinar i verificar els processos que s'executen en sistemes de vot electrònic. Tot i que la tesi no parla de la implementació dels sistemes de vot electrònic, sí que s'enfoca en protocols que han tingut, o poden tenir, una aplicació pràctica actualment. La tesi té els continguts següents: Un estudi en sistemes de vot electrònic que proporcionen funcionalitats per a que els votants verifiquin els processos. Entre aquests sistemes, trobem el que es va utilitzar a les eleccions municipals i parlamentàries a Noruega als anys 2011 i 2013, així com el sistema utilitzat a l'estat Australià de New South Wales, per a les eleccions generals de 2015, sistemes en els que l'autora ha participat directament en el diseny dels seus protocols criptogràfics. La tesi també conté una sintaxi que es pot utilizar per modelar sistemes de vot electrònic que proporcionen verificabilitat individual (on verifica el votant). Aquesta sintaxi s'enfoca en sistemes caracteritzats pel fet de que el votant confirma la emissió del seu vot un cop ha verificat unes evidències sobre ell, proporcionades pel protocol. A més de la sintaxi, es proporcionen definicions de les propietats de seguretat d'aquestts sistemes. La tesi també conté una descripció del sistema i protocol de vot electrònic que s'utilitza al cantó Suís de Neuchâtel a partir del 2014, el qual té funcionalitats per a que els votants verifiquin certs processos del sistema. La tesi a més conté un anàlisi de la seguretat de l'esquema, així com possibles extensions del protocol. Finalment, la tesi inclou dos protocols nous que proporcionen noves característiques i funcionalitats respecte als existents a l'estat de l'art de la tècnica. El primer permet a un votant defendre's de un coaccionador generant proves falses, i el segon fa un canvi de paradigma de la verificabilitat individual, de forma que el votant no ha de verificar certs processos per a saber que s'han efectuant correctament. La tesi inclou un anàlisi formal de les propietats de seguretat dels dos protocols, així com exemples de com podrien ser implementats en un escenari real.Postprint (published version

    Receipt-Freeness and Coercion Resistance in Remote E-Voting Systems

    Get PDF
    Abstract: Remote electronic voting (E-voting) is a more convenient and efficient methodology when compared with traditional voting systems. It allows voters to vote for candidates remotely, however, remote E-voting systems have not yet been widely deployed in practical elections due to several potential security issues, such as vote-privacy, robustness and verifiability. Attackers' targets can be either voting machines or voters. In this paper, we mainly focus on three important security properties related to voters: receipt-freeness, vote-selling resistance, and voter-coercion resistance. In such scenarios, voters are willing or forced to cooperate with attackers. We provide a survey of existing remote E-voting systems, to see whether or not they are able to satisfy these three properties to avoid corresponding attacks. Furthermore, we identify and summarise what mechanisms they use in order to satisfy these three security properties

    A framework for comparing the security of voting schemes

    Get PDF
    We present a new framework to evaluate the security of voting schemes. We utilize the framework to compare a wide range of voting schemes, including practical schemes in realworld use and academic schemes with interesting theoretical properties. In the end we present our results in a neat comparison table. We strive to be unambiguous: we specify our threat model, assumptions and scope, we give definitions to the terms that we use, we explain every conclusion that we draw, and we make an effort to describe complex ideas in as simple terms as possible. We attempt to consolidate all important security properties from literature into a coherent framework. These properties are intended to curtail vote-buying and coercion, promote verifiability and dispute resolution, and prevent denial-of-service attacks. Our framework may be considered novel in that trust assumptions are an output of the framework, not an input. This means that our framework answers questions such as ”how many authorities have to collude in order to violate ballot secrecy in the Finnish paper voting scheme?

    Electronic Voting over the Internet - A real-world solution

    Get PDF
    Multicert develops an Internet voting solution called Certvote for over a decade. The system has been included in the pilot experiment for electronic elections in Portugal, at the beginning of the millennium, and has been updated and developed until this date. The dissertation will have the student analyse this system and characterize it relative to the state of the art. Namely, following objectives are underway: 1) Investigation of the state of the art for electronic voting systems in the scientific literature; 2) Detailed characterization of Certvote with the aid of Multicert?s development team; 3) Comparison of Certvote and relevant alternative solutions both in terms of specific scenarios it should work under and of security requirements or trust models it offers; 4) Proposition of changes to improve Certvote according to the obtained results
    corecore