381 research outputs found

    Spatiotemporal chaos in Arnold coupled logistic map lattice

    Get PDF
    In this paper, we propose a new spatiotemporal dynamics of Arnold coupled logistic map lattice (ACLML). Here, the coupling method between lattices is not a neighborhood coupling but the non-neighborhood of Arnold cat maps. In the proposed system, the criteria such as Kolmogorovโ€“Sinai entropy density and universality, bifurcation diagram, mutual information, space amplitude and space-time diagrams are investigated in this paper. The new features of the proposed system include the lower mutual information between lattices, larger range of parameters for chaotic behaviors, the higher percentage of lattices in chaotic behaviors for most of parameters and less periodic window in bifurcation diagram. These features are more suitable for cryptography. For numerical simulations, we have employed the coupled map lattices system (CML) for comparison. The results indicate that the proposed system has those superior features to the coupled map lattice system (CML). It should be highlighted that the proposed ACLML is a suitable chaotic system for cryptography

    Design of nonlinear observer for chaotic message transmission

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 60-64)Text in English; Abstract: Turkish and Englishx, 64 leavesChaos is an interesting nonlinear phenomena that occurs in wide variety of fields. A significant amount of research was devoted to understanding chaos and its properties. After that, researchers focused on searching for possible application areas for chaos to utilize its properties. The need to increase the security of a communication system is considered as a perfect match for chaos and its several properties, yielding chaotic communication. In this thesis, chaotic communication is approached from a control theory perspective. Specifically, three nonlinear observers are designed to extract message encrypted in a chaotic communication signal. The design and stability analysis is presented for the first observer, and the other observers are presented as modifications to the first one. Extensive numerical simulations are performed to demonstrate the viability of the proposed observers. Robustness of the observers to noise, additive disturbances, and parametric mismatch, and security of the observers are demonstrated numerically

    Observer-based chaos synchronization for secure communications

    Get PDF
    Chaos, with reference to chaos theory, refers to an apparent lack of order in a system that, nevertheless, obeys particular laws or rules. The chaotic signals generated by chaotic systems have some properties such as randomness, complexity and sensitive dependence on initial conditions, which make them particularly suitable for secure communications. Since the 1990s, the problem of secure communication, based on chaos synchronization, has been thoroughly investigated and many methods, for instance, robust and adaptive control approaches, have been proposed to realize the chaos synchronization. However, from systems theory perspective, it may seem obvious that many robust and adaptive control methods could be considered for possible attacks against secure communication. In this thesis, we introduce the concept of secure chaos synchronization from the control theoretic view point. A new secure communication system, based on the chaos synchronization, is proposed and its security is analyzed, both theoretically and numerically

    Computational Intelligence and Complexity Measures for Chaotic Information Processing

    Get PDF
    This dissertation investigates the application of computational intelligence methods in the analysis of nonlinear chaotic systems in the framework of many known and newly designed complex systems. Parallel comparisons are made between these methods. This provides insight into the difficult challenges facing nonlinear systems characterization and aids in developing a generalized algorithm in computing algorithmic complexity measures, Lyapunov exponents, information dimension and topological entropy. These metrics are implemented to characterize the dynamic patterns of discrete and continuous systems. These metrics make it possible to distinguish order from disorder in these systems. Steps required for computing Lyapunov exponents with a reorthonormalization method and a group theory approach are formalized. Procedures for implementing computational algorithms are designed and numerical results for each system are presented. The advance-time sampling technique is designed to overcome the scarcity of phase space samples and the buffer overflow problem in algorithmic complexity measure estimation in slow dynamics feedback-controlled systems. It is proved analytically and tested numerically that for a quasiperiodic system like a Fibonacci map, complexity grows logarithmically with the evolutionary length of the data block. It is concluded that a normalized algorithmic complexity measure can be used as a system classifier. This quantity turns out to be one for random sequences and a non-zero value less than one for chaotic sequences. For periodic and quasi-periodic responses, as data strings grow their normalized complexity approaches zero, while a faster deceasing rate is observed for periodic responses. Algorithmic complexity analysis is performed on a class of certain rate convolutional encoders. The degree of diffusion in random-like patterns is measured. Simulation evidence indicates that algorithmic complexity associated with a particular class of 1/n-rate code increases with the increase of the encoder constraint length. This occurs in parallel with the increase of error correcting capacity of the decoder. Comparing groups of rate-1/n convolutional encoders, it is observed that as the encoder rate decreases from 1/2 to 1/7, the encoded data sequence manifests smaller algorithmic complexity with a larger free distance value

    ๊ณ ์ฐจ์› ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ, ๋Œ€๊ธฐ์˜ˆ์ธก์„ฑ ๋ฐ ์ž๋ฃŒ๋™ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2021.8. ๋ฌธ์Šน์ฃผ.๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์€ ๋ ˆ์ผ๋ฆฌ ๋ฒ ๋‚˜๋ฅด ๋Œ€๋ฅ˜ ํ˜„์ƒ์˜ ๋‹จ์ˆœํ•œ ๋ชจํ˜•์œผ๋กœ ์ฒ˜์Œ ๊ณ ์•ˆ๋˜์—ˆ์œผ๋‚˜, ์ดํ›„ ์•ผ๋ฆ‡ํ•œ ๋Œ๊ฐœ์˜ ๋ฐœ๊ฒฌ ๋ฐ ํ˜ผ๋ˆ ์ด๋ก ์˜ ๊ธ‰์†ํ•œ ๋ฐœ์ „์— ๋Œ€ํ•œ ๊ธฐ์—ฌ ๋“ฑ์„ ํ†ตํ•ด ๊ทธ ์ค‘์š”์„ฑ์ด ๊พธ์ค€ํžˆ ๋ถ€๊ฐ๋˜์–ด ์™”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ†ตํ•ด ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์„ ๊ณ ์ฐจ์›์œผ๋กœ ํ™•์žฅํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์œ ๋„ ๊ณผ์ •์—์„œ ๋น„๋กฏ๋˜๋Š” ํ‘ธ๋ฆฌ์— ๊ธ‰์ˆ˜์˜ ์ ˆ๋‹จ์— ์žˆ์–ด ์ถ”๊ฐ€ ๋ชจ๋“œ๋ฅผ ํ†ตํ•ด ์ฐจ์ˆ˜๋ฅผ ํ™•์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ์ผ๋ฐ˜ํ™” ํ•˜์—ฌ ์ž„์˜์˜ ์ž์—ฐ์ˆ˜ NN์— ๋Œ€ํ•œ (3N)(3N) ๋ฐ (3N+2)(3N+2)์ฐจ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์„ ์œ ๋„ํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋Š” ๋ฌผ๋ฆฌ์  ํ™•์žฅ์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ๋ฐฉ์‹์œผ๋กœ, ๋ ˆ์ผ๋ฆฌ ๋ฒ ๋‚˜๋ฅด ๋Œ€๋ฅ˜ ํ˜„์ƒ์„ ๊ด€์žฅํ•˜๋Š” ์ง€๋ฐฐ๋ฐฉ์ •์‹์— ๋‚˜ํƒ€๋‚ด๊ณ ์ž ํ•˜๋Š” ๋ฌผ๋ฆฌ ์„ฑ๋ถ„์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋” ๋†’์€ ์ฐจ์ˆ˜์˜ ๋ฐฉ์ •์‹๊ณ„๋ฅผ ์–ป๋Š” ๊ณผ์ •์ด๋‹ค. ์ด์— ์ถ”๊ฐ€ ๋ฌผ๋ฆฌ ์„ฑ๋ถ„์œผ๋กœ ๋ชจํ˜• ํ”„๋ ˆ์ž„์˜ ํšŒ์ „๊ณผ ๋‚ด๋ถ€์— ๋ถ€์œ ํ•˜๋Š” ์˜ค์—ผ ๋ฌผ์งˆ ๋”ฐ์œ„์˜ ์Šค์นผ๋ผ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ƒˆ๋กœ์šด 6์ฐจ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์„ ์œ ๋„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์–ป์–ด์ง„ ๊ณ ์ฐจ์› ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์€ ๋น„์„ ํ˜•์„ฑ, ๋Œ€์นญ์„ฑ, ์†Œ์‚ฐ์„ฑ ๋“ฑ์˜ ๊ณตํ†ต๋œ ํŠน์ง•์„ ์ง€๋‹Œ๋‹ค. ์ƒˆ๋กญ๊ฒŒ ํ™•์žฅ๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์˜ ํ•ด์˜ ํŠน์„ฑ ๋ฐ ๊ทธ๋“ค์ด ๋‚˜ํƒ€๋‚ด๋Š” ๋‹ค์–‘ํ•œ ๋น„์„ ํ˜• ํ˜„์ƒ์˜ ๊ทœ๋ช…์€ ์ˆ˜์น˜ ์ ๋ถ„์„ ํ†ตํ•ด ์–ป์€ ํ•ด์˜ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ ์ด๋ฃจ์–ด์กŒ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์นด์˜ค์Šค ์ด๋ก ์— ์ž…๊ฐํ•œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ถ„์„ ๋ฐฉ๋ฒ•์ด ํ™œ์šฉ๋˜์—ˆ๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ๋ถ„์„๋ฐฉ๋ฒ•์—๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„ ์ƒ์˜ ์ฃผ๊ธฐ์„ฑ๋„ํ‘œ, ๋ถ„๊ธฐ๋„ํ‘œ ๋ฐ ๋ฆฌ์•„ํ‘ธ๋…ธํ”„ ์ง€์ˆ˜ ๊ทธ๋ฆฌ๊ณ  ์œ„์ƒ ๊ณต๊ฐ„ ๋‚ด ํ•ด์˜ ๊ถค๋„ ๋ฐ ํ”„๋ ‰ํƒˆ ํก์ธ๊ฒฝ๊ณ„ ๋“ฑ์ด ์žˆ๋‹ค. ๋ฐํ˜€์ง„ ๋น„์„ ํ˜• ๋™์—ญํ•™์  ํ˜„์ƒ ์ค‘ ํŠนํžˆ ์ฃผ๋ชฉํ•  ๋งŒํ•œ ํ˜„์ƒ์—๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์— ๋”ฐ๋ฅธ ๋ถ„๊ธฐ ๊ตฌ์กฐ์˜ ๋ณ€๋™, ํ•˜๋‚˜์˜ ์œ„์ƒ ๊ณต๊ฐ„ ๋‚ด ์กด์žฌํ•˜๋Š” ์—ฌ๋Ÿฌ ํƒ€์ž…์˜ ํ•ด์˜ ๊ณต์กด, ์นด์˜ค์Šค์˜ ๋™๊ธฐํ™” ๋“ฑ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ˜„์ƒ์˜ ์ˆ˜ํ•™์ ~โ‹…\cdot~์ˆ˜์น˜์  ๋ถ„์„๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ด๊ฒƒ์ด ๋Œ€๊ธฐ๊ณผํ•™ ํŠนํžˆ ์ž๋ฃŒ๋™ํ™”์™€ ๋Œ€๊ธฐ์˜ˆ์ธก์„ฑ ๋ถ„์•ผ์— ํ•จ์˜ํ•˜๋Š” ๋ฐ”๊ฐ€ ๋ฌด์—‡์ธ์ง€๋„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ์ผ๋ฐ˜ํ™” ๋ฐฉ์‹์— ๋”ฐ๋ผ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์˜ ์ฐจ์ˆ˜๋ฅผ ์˜ฌ๋ฆฌ๋ฉด ๋ถ„๊ธฐ ๊ตฌ์กฐ์— ๋ณ€๋™์ด ์ผ์–ด๋‚˜ ์ž„๊ณ„ ๋ ˆ์ผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ฆ๊ฐ€๊ฐ€ ๋น„๋กฏ๋œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ž„๊ณ„ ๋ ˆ์ผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์นด์˜ค์Šค๊ฐ€ ์ฒ˜์Œ ๋ฐœ์ƒํ•˜๋Š” ๊ฐ€์žฅ ๋‚ฎ์€ ๋ ˆ์ผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์ด๋ฏ€๋กœ ์ด๊ฒƒ์ด ์ฐจ์ˆ˜์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๊ฒƒ์€ ์ฆ‰ ๊ณ ์ฐจ์› ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์—์„œ๋Š” ์นด์˜ค์Šค์˜ ๋ฐœ์ƒ์ด ์ €์ฐจ์›์—์„œ๋ณด๋‹ค ๋” ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ฐจ์ˆ˜ ๋ฐ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์— ๊ทธ๋ ค์ง„ ์ฃผ๊ธฐ์„ฑ ๋„ํ‘œ๋ฅผ ๋ณด๋ฉด ์นด์˜ค์Šค๊ฐ€ ์กด์žฌํ•˜๋Š” ์˜์—ญ์ด ์ฐจ์ˆ˜์— ๋”ฐ๋ผ ์ ์  ์ค„์–ด๋“ค๊ณ , ์–ด๋Š ์ฐจ์ˆ˜ ์ด์ƒ๋ถ€ํ„ฐ๋Š” ์‚ฌ๋ผ์ง€๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ™•์žฅ๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์—์„œ๋Š” ์ž„๊ณ„ ๋ ˆ์ผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ถ”๊ฐ€๋œ ๋ฌผ๋ฆฌํ˜„์ƒ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๊ฐ’์„ ์ฆ๊ฐ€์‹œํ‚ด์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ ์œ ์ฒด ๋‚ด ์Šค์นผ๋ผ ํšจ๊ณผ์™€ ์—ฐ๊ด€๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ์ ์ง„์ ์œผ๋กœ ์˜ฌ๋ฆด ๊ฒฝ์šฐ์—๋Š” ์‹œ์Šคํ…œ์˜ ๋ถˆ์•ˆ์ •์„ ์•ผ๊ธฐํ•˜๋Š” ๋ ˆ์ผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์•ˆ์ •์„ ์•ผ๊ธฐํ•˜๋Š” ์Šค์นผ๋ผ ๊ด€๋ จ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„์˜ ๊ฒฝ์Ÿ์œผ๋กœ ์ธํ•ด ์‹œ์Šคํ…œ์ด ์™„์ „ํžˆ ์•ˆ์ •ํ™” ๋˜๊ธฐ ์ „ ์นด์˜ค์Šค ํ•ด๊ฐ€ ํ•œ๋ฒˆ ๋” ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์ด ์ผ์–ด๋‚œ๋‹ค. ์ด ๋‘๋ฒˆ์งธ ์นด์˜ค์Šค์— ๋Œ€์‘๋˜๋Š” ๋Œ๊ฐœ๋Š” ๊ธฐ์กด์— ์•Œ๋ ค์ง„ ๋กœ๋ Œ์ธ  ๋Œ๊ฐœ์™€๋Š” ์‚ฌ๋ญ‡ ๋‹ค๋ฅธ ๋ชจ์–‘์ƒˆ๋ฅผ ๋ณด์ธ๋‹ค. ํ•ด์˜ ๊ณต์กด ํ˜„์ƒ์€ ๋กœ๋ Œ์ธ ์— ์˜ํ•ด ๋ฐํ˜€์ง„ ํ•ด์˜ ์ดˆ๊ธฐ์กฐ๊ฑด์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„์™€๋Š” ๊ตฌ๋ถ„๋˜๋Š” ๊ฐœ๋…์œผ๋กœ, ์ดˆ๊ธฐ์กฐ๊ฑด์œผ๋กœ ์ธํ•œ ์นด์˜ค์Šค ํ•ด ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ์ฆํญ๋˜๋Š” ์ด๋ฅธ๋ฐ” ๋‚˜๋น„ํšจ๊ณผ์™€๋Š” ๋‹ฌ๋ฆฌ ์ดˆ๊ธฐ์กฐ๊ฑด์— ๋”ฐ๋ผ ์™„์ „ํžˆ ๋‹ค๋ฅธ ํƒ€์ž…์˜ ํ•ด๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋Œ๊ฐœ๊ฐ€ ๊ฐ™์€ ์œ„์ƒ๊ณต๊ฐ„์— ๊ณต์กดํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋งŒ์•ฝ ์‹ค์ œ ๋‚ ์”จ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์‹œ์Šคํ…œ์ด ์ƒ์กดํ•˜๋Š” ์œ„์ƒ๊ณต๊ฐ„์—์„œ ์ด๋Ÿฌํ•œ ํ•ด์˜ ๊ณต์กด์ด ์‹ค์ œํ•œ๋‹ค๋ฉด ์ด๊ฒƒ์€ ์นด์˜ค์Šค์˜ ์ดˆ๊ธฐ์กฐ๊ฑด์— ๋Œ€ํ•œ ๋ฏผ๊ฐ์„ฑ๊ณผ ๋”๋ถˆ์–ด ๋Œ€๊ธฐ์˜ˆ์ธก์„ฑ ํŠนํžˆ ์•™์ƒ๋ธ” ์˜ˆ๋ณด์— ์ด๋ก ์ ์œผ๋กœ ์‹œ์‚ฌํ•˜๋Š” ๋ฐ”๊ฐ€ ํด ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ™•์žฅ๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ธฐ์กด ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ๊ณผ ๊ฐ™์ด ๋ ˆ์ผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ถ„๊ธฐ ๊ตฌ์กฐ์˜ ๋ถ€์ •ํ•ฉ์œผ๋กœ ์ธํ•ด ๋น„๋กฏ๋˜๋Š” ํ•ด์˜ ๊ณต์กด์ด ๋‚˜ํƒ€๋‚œ๋‹ค. ํ•ด์˜ ๊ณต์กด ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐํ•ฉ์„ ์ฐพ์•„๋‚ด๊ธฐ ์œ„ํ•ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ™•์žฅ๋œ 6์ฐจ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์˜ ๋ถ„๊ธฐ๊ตฌ์กฐ๋ฅผ ์ˆ˜์น˜์ ~โ‹…\cdot~ํ•ด์„์  ๋ฐฉ๋ฒ•์œผ๋กœ ๋„์ถœํ•˜์˜€๊ณ  ์ดˆ๊ธฐ์กฐ๊ฑด์— ๋”ฐ๋ผ ์„œ๋กœ ๋‹ค๋ฅธ ๋‘๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ๋ถ„๊ธฐ ์ฆ‰ ํ˜ธํ”„ ๋ฐ ํ—คํ…Œ๋กœํด๋ฆฌ๋‹‰ ๋ถ„๊ธฐ๊ฐ€ ์—‡๊ฐˆ๋ฆฌ๋Š” ๊ตฌ๊ฐ„์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ธฐ์กด 3์ฐจ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์—์„œ ํ•˜๋‚˜์˜ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ •๋ณด ์ „๋‹ฌ ๋งŒ์œผ๋กœ๋„ ์ž๊ธฐ๋™๊ธฐํ™” ํ˜„์ƒ์ด ์ผ์–ด๋‚จ์€ ์ด๋ฏธ ์ž˜ ์•Œ๋ ค์ง„ ์‚ฌ์‹ค์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ™•์žฅ๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์—์„œ๋„ ๊ธฐ์กด ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ๊ณผ ๊ฐ™์€ ์กฐ๊ฑด ํ•˜์—์„œ ์นด์˜ค์Šค์˜ ์ž๊ธฐ๋™๊ธฐํ™”๊ฐ€ ์ผ์–ด๋‚˜๋Š” ์ ์„ ์ ์ ˆํ•œ ๋ฆฌ์•„ํ‘ธ๋…ธํ”„ ํ•จ์ˆ˜์˜ ์ œ์‹œ๋ฅผ ํ†ตํ•ด ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์ผ๋ฐ˜ํ™”๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์˜ ์ž๊ธฐ๋™๊ธฐํ™”์— ๋Œ€ํ•ด์„œ๋Š” ๋น„๋ก ์ˆ˜ํ•™์  ์ฆ๋ช…์ด ๋™๋ฐ˜๋˜์ง€๋Š” ์•Š์•˜์ง€๋งŒ ์ˆ˜์น˜์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์—ญ์‹œ ๊ฐ™์€ ์กฐ๊ฑด ํ•˜์—์„œ ์ž๊ธฐ๋™๊ธฐํ™”๊ฐ€ ์ผ์–ด๋‚จ์„ ๋’ท๋ฐ›์นจ ํ•  ๊ทผ๊ฑฐ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ˆ˜์น˜ ์‹คํ—˜์„ ํ†ตํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์ฐจ์ˆ˜๋ฅผ ๊ฐ€์ง„ ์ผ๋ฐ˜ํ™”๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ ๊ฐ„ ๋™๊ธฐํ™”๊ฐ€ ์ผ์–ด๋‚˜๋Š” ์ •๋„๊ฐ€ ์ƒํ˜ธ ์ฐจ์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋‘ ์‹œ์Šคํ…œ ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ์™€ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค๋Š” ์ ๋„ ํ™•์ธํ•˜์˜€๋‹ค. ์ถ”๊ฐ€ ํ‘ธ๋ฆฌ์— ๋ชจ๋“œ๋ฅผ ํฌํ•จํ•˜์—ฌ ๋” ์ž‘์€ ์Šค์ผ€์ผ์˜ ์šด๋™์„ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ณ ์ฐจ์› ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ๊ณผ ๊ทธ๋ ‡๊ฒŒ ํ•˜์ง€ ๋ชปํ•˜๋Š” ์ €์ฐจ์› ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ ๊ฐ„ ๋™๊ธฐํ™”์˜ ๊ฐ€๋Šฅ์„ฑ์€ ๋Œ€๊ธฐ๊ณผํ•™์—์„œ ํŠนํžˆ ๋Œ€๊ธฐ ๋ชจํ˜• ๋ฐ ์ž๋ฃŒ๋™ํ™”์— ์žˆ์–ด ์ค‘์š”ํ•œ ๊ฐœ๋…์ ์ธ ํ•จ์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŠน๋ณ„ํžˆ ์•™์ƒ๋ธ” ์นผ๋งŒ ํ•„ํ„ฐ ์ž๋ฃŒ๋™ํ™” ๊ธฐ๋ฒ•์„ ์ผ๋ก€๋กœ ์ผ๋ฐ˜ํ™”๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์ด ์ž๋ฃŒ๋™ํ™” ๊ธฐ๋ฒ•์˜ ๋น„๊ต์  ๋‹จ์ˆœํ•œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋กœ์จ์˜ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์นด์˜ค์Šค ๋™๊ธฐํ™” ํ˜„์ƒ์— ๊ธฐ๋ฐ˜์„ ๋‘” ๊ฐœ๋…์  ๋„์‹์œผ๋กœ ๋ฐœ์‹ ์ž๋ฅผ ์‹ค์ œ ๋Œ€๊ธฐ ํ˜„์ƒ, ์ˆ˜์‹ ์ž๋ฅผ ๋Œ€๊ธฐ ๋ชจํ˜•, ๊ทธ๋ฆฌ๊ณ  ๋ฐœ์‹ ์ž์—์„œ ์ˆ˜์‹ ์ž๋กœ ์ „๋‹ฌ๋˜๋Š” ์ •๋ณด๋ฅผ ๊ด€์ธก์— ๋Œ€์‘์‹œํ‚ด์œผ๋กœ์จ ์ˆ˜์‹ ์ž์™€ ๋ฐœ์‹ ์ž ๊ฐ„์˜ ์˜ค์ฐจ, ๋ฐœ์‹ ์ž์—์„œ ์ˆ˜์‹ ์ž๋กœ ์ „๋‹ฌํ•  ์ •๋ณด ์ถ”์ถœ ๊ณผ์ •์—์„œ ๋น„๋กฏ๋˜๋Š” ์˜ค์ฐจ ๋“ฑ์„ ํ†ตํ•ด ์‹ค์ œ ๋Œ€๊ธฐ ๋ชจํ˜•๊ณผ ๊ด€์ธก์˜ ๋ถˆ์™„์ „ํ•จ์„ ๊ฐœ๋…์ ์œผ๋กœ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ผ๋ฐ˜ํ™”๋œ ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์—์„œ ์ดˆ๊ธฐ์กฐ๊ฑด์— ์•„์ฃผ ์ž‘์€ ์„ญ๋™์„ ์ค€ ํ•ด์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ํ•ด ๊ฐ„์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ด๊ฒƒ์ด ๋Œ€๊ธฐ์˜ˆ์ธก์„ฑ์— ํ•จ์˜ํ•˜๋Š” ๋ฐ”๊ฐ€ ๋ฌด์—‡์ธ์ง€ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์ด๋•Œ ์ด๋ ‡๊ฒŒ ๋‘ ํ•ด๊ฐ€ ๋ฒŒ์–ด์ง€๋Š” ์ •๋„๊ฐ€ ๊ธฐ์ค€๊ฐ’์„ ๋„˜๊ฒŒ ๋˜๋Š” ์‹œ๊ฐ„์„ ํŽธ์ฐจ์‹œ๊ฐ„์ด๋ผ ์นญํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŽธ์ฐจ์‹œ๊ฐ„์ด ์ ์–ด๋„ ์ฃผ์–ด์ง„ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’ ํ•˜์—์„œ๋Š” ๋กœ๋ Œ์ธ  ์‹œ์Šคํ…œ์˜ ์ฐจ์ˆ˜์— ๋Œ€ํ•œ ๊ฐ•ํ•œ ๋น„๋‹จ์กฐ์  ์˜์กด์„ฑ์„ ๋ณด์ž„์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด๋ ‡๊ฒŒ ์ •์˜๋œ ํŽธ์ฐจ์‹œ๊ฐ„์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์ œ ๋‚ ์”จ ์‚ฌ๋ก€์˜ ์ˆ˜์น˜ ์˜ˆ๋ณด ๋ชจ์˜์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋Œ€๊ธฐ์˜ˆ์ธก์„ฑ์„ ์ธก์ •ํ•˜์˜€์„๋•Œ, ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋Œ€๊ธฐ์˜ˆ์ธก์„ฑ์ด ์—ฐ์งํ•ด์ƒ๋„์— ๋Œ€ํ•œ ๋น„๋‹จ์กฐ์  ์˜์กด์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์— ์ด๋Ÿฌํ•œ ๋น„๋‹จ์กฐ์  ์˜์กด์„ฑ์˜ ๊ทผ๋ณธ์ ์ธ ์›์ธ์€ ๋ชจํ˜•์˜ ๋Œ€๊ธฐ ๋‚˜์•„๊ฐ€ ์‹ค์ œ ๋‚ ์”จ์— ๋‚ด์žฌ๋œ ์นด์˜ค์Šค์— ์žˆ์„ ์ˆ˜ ์žˆ์Œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค.The Lorenz system is a simplified model of Rayleigh--B\'{e}nard convection whose importance lies not only in understanding the fluid convection problem but also in its formative role in the discovery of strange attractors and the subsequent development of the modern theory of chaos. In this dissertation, two different approaches to extending the Lorenz system to higher dimensions are considered. First, by including additional wavenumber modes at the series truncation stage of the derivation, the so-called high-order Lorenz systems are obtained up to dimension 11, which are then generalized into (3N)(3N) and (3N+2)(3N+2) dimensions for any positive integer NN. Second, by incorporating additional physical ingredients, namely, rotation and density-affecting scalar in the governing equations, a new 6-dimensional physically extended Lorenz system is derived. All of these high-dimensional extensions of the Lorenz system are shown to share some basic properties such as nonlinearity, symmetry, and volume contraction. The numerically obtained solutions of the extended Lorenz systems are studied through periodicity diagrams, bifurcation diagrams, and Lyapunov exponent spectra in parameter spaces and also through solution trajectories and basin boundaries in the phase space, illuminating various nonlinear dynamical phenomena such as shifts in the bifurcation structures, attractor coexistence, and chaos synchronization. Accompanying these results are discussions about their applicability and theoretical implications, particularly in the context of data assimilation and atmospheric predictability. The shifts in bifurcation structures induced by raising the dimension lead to higher critical Rayleigh parameter values, implying that it gets more difficult for chaos to emerge at higher dimensions. Periodicity diagrams reveal that the parameter ranges in which chaos resides tend to diminish with rising dimensions, eventually vanishing altogether. Likewise, simultaneously increasing the newly added parameters in the physically extended Lorenz system leads to higher critical Rayleigh parameter values; however, raising only the scalar-related parameter leads to an eventual return of chaos albeit with an attractor with qualitatively distinct features from the Lorenz attractor. The peculiar bifurcation structure shaped by the competition between the opposing effects of raising the Rayleigh and the scalar-related parameters helps explain this second onset of chaos. Attractor coexistence refers to the partition of the phase space by basin boundaries so that different types of attractors emerge depending on the initial condition. Similar to the original Lorenz system, the physically extended Lorenz system is found to exhibit attractor coexistence stemming from mismatches between the Hopf and heteroclinic bifurcations. If the atmosphere is found to exhibit such behavior, it can have grave implications for atmospheric predictability and ensemble forecasting beyond mere sensitive dependence on initial conditions, which only applies to chaotic solutions. Chaos synchronization is another curious phenomenon known to occur in the Lorenz system. By finding an appropriate Lyapunov function, the physically extended Lorenz system is shown to self-synchronize under the same condition that guarantees self-synchronization in the original Lorenz system. Regarding the generalized Lorenz systems, numerical evidence in support of self- as well as some degree of generalized synchronization, that is, synchronization between two Lorenz systems differing in their dimensions, is provided. Numerical results suggest that the smaller the dimensional difference between the two, the stronger they tend to synchronize. Some conceptual implications of such results are discussed in relation to atmospheric modeling and data assimilation. Especially, the feasibility of using the (3N)(3N)-dimensional Lorenz systems as a testbed for data assimilation methods is explored. For demonstration, the ensemble Kalman filter method is implemented to assimilate observations with ensembles of model outputs generated using the generalized Lorenz systems, whose imperfections are simulated through varying the severity of ensemble over- or underdispersion, dimensional differences, random forcing, and model or observation biases. Further investigation of the generalized Lorenz systems is carried out from the perspective of predictability, showing that predictability measured by deviation time, which is the time when the threshold-exceeding deviations among ensemble members occur, can respond non-monotonically to increases in the system's dimension. Accordingly, deviation time is put forward as a direct measure of predictability due to weather's sensitive dependence on initial conditions. Raising the dimension under the proposed generalizations is thought to be analogous to resolving smaller-scale motions in the vertical direction. The estimated deviation times in an ensemble of real-case simulations using a realistic numerical weather forecasting model reveal that the predictability of real-case simulations also depend non-monotonically on model vertical resolution. It is suggested that beneath this non-monotonicity fundamentally lies chaos inherent to the model atmospheres and, by extension, weather at large.1 Overview 1 1.1 Chaos and the Lorenz system 1 1.2 Extending the Lorenz system 6 1.3 Bifurcations and related phenomena 8 1.4 Chaos in the atmosphere 14 1.5 Organization of the dissertation 16 2 Chaos and Periodicity of the High-Order Lorenz Systems 18 2.1 Introduction 18 2.2 The high-order Lorenz systems 20 2.2.1 Derivation 22 2.2.2 Some properties of the Lorenz systems 24 2.3 Numerical methods 26 2.4 Results 32 2.4.1 Periodicity diagrams 32 2.4.2 Bifurcation diagrams and phase portraits 34 2.5 Discussion 40 3 A Physically Extended Lorenz System with Rotation and Density-Affecting Scalar 42 3.1 Introduction 42 3.2 Derivation 45 3.3 Effects of rotation and scalar 49 3.3.1 Fixed points and stability 49 3.3.2 Bifurcation structure in the rT-ฯƒ space 52 3.3.3 Bifurcations along rC and s 55 3.4 The case when ฮฒ < 0 65 3.4.1 Bifurcation and the onset of chaos 67 3.4.2 Chaotic attractors and associated flow patterns 73 3.5 Self-synchronization 81 3.6 Discussion 85 4 Coexisting Attractors in the Physically Extended Lorenz System 87 4.1 Introduction 87 4.2 Methodology 89 4.3 Results 92 4.3.1 Coexisting attractors in the LorenzStenflo system 92 4.3.2 Coexisting attractors under rotation and scalar 100 4.4 Discussion 110 5 The (3N)- and (3N + 2)-Dimensional Generalizations of the Lorenz System 113 5.1 Introduction 113 5.2 The generalized Lorenz systems 115 5.2.1 The Pk- and Qk-sets for nonlinear terms 115 5.2.2 The (3N)- and (3N + 2)-dimensional systems 116 5.2.3 Choosing the nonlinear pairs 117 5.3 Derivation 119 5.3.1 The (3N)-dimensional generalization 121 5.3.2 The (3N + 2)-dimensional generalization 126 5.4 Effects of dimension in parameter spaces 126 5.4.1 Linear stability analysis 126 5.4.2 Chaos in dimension-parameter spaces 130 5.5 Perspectives on predictability 136 5.5.1 Notions of predictability 136 5.5.2 Twin experiments and deviation time 138 5.6 Discussion 144 6 Chaos Synchronization in the Generalized Lorenz Systems 147 6.1 Introduction 147 6.2 Self-synchronization 149 6.2.1 Numerical evidence 149 6.2.2 Error subsystems 155 6.3 Application in image encryption 157 6.3.1 Demonstration: A simple approach 157 6.3.2 Demonstration: An alternative approach 168 6.4 Beyond self-synchronization 172 6.5 Discussion 180 7 The Generalized Lorenz Systems as a Testbed for Data Assimilation: The Ensemble Kalman Filter 182 7.1 Introduction 182 7.2 Methodology 187 7.2.1 Implementation of the ensemble Kalman filter 188 7.3 Results 191 7.3.1 Effects of ensemble size and model accuracy 191 7.3.2 Effects of observation frequency and accuracy 205 7.3.3 Effects of observation and model biases 214 7.4 Discussion 218 8 Can Chaos Theory Explain Non-Monotonic Dependence of Atmospheric Predictability on Model Vertical Resolution 220 8.1 Introduction 220 8.2 Background 222 8.2.1 Lorenz's ideas about atmospheric predictability 222 8.2.2 Model vertical resolution and predictability in numerical weather prediction 224 8.3 Results 229 8.3.1 Deviation time in the Lorenz systems revisited 229 8.3.2 WRF model control simulations 232 8.3.3 WRF model ensemble experiments and deviation time 241 8.3.4 Spatial distribution of deviation time 254 8.4 Discussion 261 9 Summary and Final Remarks 264 Bibliography 271 Abstract in Korean 295 Acknowledgments 299 Index 303๋ฐ•

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artistโ€™s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs
    • โ€ฆ
    corecore