7,135 research outputs found

    Running of Fermion Observables in Non-Supersymmetric SO(10) Models

    Get PDF
    We investigate the complete renormalization group running of fermion observables in two different realistic non-supersymmetric models based on the gauge group SO(10)\textrm{SO}(10) with intermediate symmetry breaking for both normal and inverted neutrino mass orderings. Contrary to results of previous works, we find that the model with the more minimal Yukawa sector of the Lagrangian fails to reproduce the measured values of observables at the electroweak scale, whereas the model with the more extended Yukawa sector can do so if the neutrino masses have normal ordering. The difficulty in finding acceptable fits to measured data is a result of the added complexity from the effect of an intermediate symmetry breaking as well as tension in the value of the leptonic mixing angle θ23\theta^\ell_{23}.Comment: 15 pages, 3 figures, 4 tables. Final version published in JHE

    Symmetry Breaking Constraints: Recent Results

    Full text link
    Symmetry is an important problem in many combinatorial problems. One way of dealing with symmetry is to add constraints that eliminate symmetric solutions. We survey recent results in this area, focusing especially on two common and useful cases: symmetry breaking constraints for row and column symmetry, and symmetry breaking constraints for eliminating value symmetryComment: To appear in Proceedings of Twenty-Sixth Conference on Artificial Intelligence (AAAI-12

    Superlattice-induced ferroelectricity in charge-ordered La1/3_{1/3}Sr2/3_{2/3}FeO3_{3}

    Get PDF
    Charge-order-driven ferroelectrics are an emerging class of functional materials, distinct from conventional ferroelectrics, where electron-dominated switching can occur at high frequency. Despite their promise, only a few systems exhibiting this behavior have been experimentally realized thus far, motivating the need for new materials. Here, we use density functional theory to study the effect of artificial structuring on mixed-valence solid-solution La1/3_{1/3}Sr2/3_{2/3}FeO3_{3} (LSFO), a system well-studied experimentally. Our calculations show that A-site cation (111)-layered LSFO exhibits a ferroelectric charge-ordered phase in which inversion symmetry is broken by changing the registry of the charge order with respect to the superlattice layering. The phase is energetically degenerate with a ground-state centrosymmetric phase, and the computed switching polarization is 39 μ\muC/cm2^{2}, a significant value arising from electron transfer between Fe ions. Our calculations reveal that artificial structuring of LSFO and other mixed valence oxides with robust charge ordering in the solid solution phase can lead to charge-order-induced ferroelectricity

    Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure: implication to 5dd transition metal oxides AAOsO4_4 (A=A= K, Rb, and Cs)

    Get PDF
    We report our theoretical predictions on the linear magnetoelectric (ME) effects originating from odd-parity multipoles associated with spontaneous spin and orbital ordering on a diamond structure. We derive a two-orbital model for dd electrons in ege_g orbitals by including the effective spin-orbit coupling which arises from the mixing between ege_g and t2gt_{2g} orbitals. We show that the model acquires a net antisymmetric spin-orbit coupling once staggered spin and orbital orders occur spontaneously. The staggered orders are accompanied by odd-parity multipoles: magnetic monopole, quadrupoles, and toroidal dipoles. We classify the types of the odd-parity multipoles according to the symmetry of the spin and orbital orders. Furthermore, by computing the ME tensor using the linear response theory, we show that the staggered orders induce a variety of the linear ME responses. We elaborate all possible ME responses for each staggered order, which are useful to identify the order parameter and to detect the odd-parity multipoles by measuring the ME effects. We also elucidate the effect of lowering symmetry by a tetragonal distortion, which leads to richer ME responses. The implications of our results are discussed for 5d5d transition metal oxides, AAOsO4_4 (A=A= K, Rb, and Cs), in which the order parameters are not fully identified.Comment: 11 pages, 2 figures, 3 table

    Novel magnetic orderings in the kagome Kondo-lattice model

    Get PDF
    We consider the Kondo-lattice model on the kagome lattice and study its weak-coupling instabilities at band filling fractions for which the Fermi surface has singularities. These singularites include Dirac points, quadratic Fermi points in contact with a flat band, and Van Hove saddle points. By combining a controlled analytical approach with large-scale numerical simulations, we demonstrate that the weak-coupling instabilities of the Kondo-lattice model lead to exotic magnetic orderings. In particular, some of these magnetic orderings produce a spontaneous quantum anomalous Hall state.Comment: 15 pages, 11 figure

    Magnetic structure and orbital ordering in BaCoO3 from first-principles calculations

    Full text link
    Ab initio calculations using the APW+lo method as implemented in the WIEN2k code have been used to describe the electronic structure of the quasi-one-dimensional system BaCoO3. Both, GGA and LDA+U approximations were employed to study different orbital and magnetic orderings. GGA predicts a metallic ground state whereas LDA+U calculations yield an insulating and ferromagnetic ground state (in a low-spin state) with an alternating orbital ordering along the Co-Co chains, consistent with the available experimental data.Comment: 8 pages, 9 figure
    corecore