799 research outputs found

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    Colorings of odd or even chirality on hexagonal lattices

    Full text link
    We define two classes of colorings that have odd or even chirality on hexagonal lattices. This parity is an invariant in the dynamics of all loops, and explains why standard Monte-Carlo algorithms are nonergodic. We argue that adding the motion of "stranded" loops allows for parity changes. By implementing this algorithm, we show that the even and odd classes have the same entropy. In general, they do not have the same number of states, except for the special geometry of long strips, where a Z2_2 symmetry between even and odd states occurs in the thermodynamic limit.Comment: 18 pages, 13 figure

    Random Graph Coloring - a Statistical Physics Approach

    Get PDF
    The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte-Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the 2-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges.Comment: 17 pages, 9 figure

    Algorithms Transcending the SAT-Symmetry Interface

    Full text link
    Dedicated treatment of symmetries in satisfiability problems (SAT) is indispensable for solving various classes of instances arising in practice. However, the exploitation of symmetries usually takes a black box approach. Typically, off-the-shelf external, general-purpose symmetry detection tools are invoked to compute symmetry groups of a formula. The groups thus generated are a set of permutations passed to a separate tool to perform further analyzes to understand the structure of the groups. The result of this second computation is in turn used for tasks such as static symmetry breaking or dynamic pruning of the search space. Within this pipeline of tools, the detection and analysis of symmetries typically incurs the majority of the time overhead for symmetry exploitation. In this paper we advocate for a more holistic view of what we call the SAT-symmetry interface. We formulate a computational setting, centered around a new concept of joint graph/group pairs, to analyze and improve the detection and analysis of symmetries. Using our methods, no information is lost performing computational tasks lying on the SAT-symmetry interface. Having access to the entire input allows for simpler, yet efficient algorithms. Specifically, we devise algorithms and heuristics for computing finest direct disjoint decompositions, finding equivalent orbits, and finding natural symmetric group actions. Our algorithms run in what we call instance-quasi-linear time, i.e., almost linear time in terms of the input size of the original formula and the description length of the symmetry group returned by symmetry detection tools. Our algorithms improve over both heuristics used in state-of-the-art symmetry exploitation tools, as well as theoretical general-purpose algorithms
    corecore