2,159 research outputs found

    Step Heat Profile in Localized Chains

    Full text link
    We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length LL. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. The width of the step grows not faster than L\sqrt{L}. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. In the case of harmonic oscillators, we also observe a drastic breakdown of local equilibrium at the step, resulting in a chaotic temperature profile.Comment: 18 pages, 8 figure

    Super-diffusion in optical realizations of Anderson localization

    Full text link
    We discuss the dynamics of particles in one dimension in potentials that are random both in space and in time. The results are applied to recent optics experiments on Anderson localization, in which the transverse spreading of a beam is suppressed by random fluctuations in the refractive index. If the refractive index fluctuates along the direction of the paraxial propagation of the beam, the localization is destroyed. We analyze this broken localization, in terms of the spectral decomposition of the potential. When the potential has a discrete spectrum, the spread is controlled by the overlap of Chirikov resonances in phase space. As the number of Fourier components is increased, the resonances merge into a continuum, which is described by a Fokker-Planck equation. We express the diffusion coefficient in terms of the spectral intensity of the potential. For a general class of potentials that are commonly used in optics, the solutions of the Fokker-Planck equation exhibit anomalous diffusion in phase space, implying that when Anderson localization is broken by temporal fluctuations of the potential, the result is transport at a rate similar to a ballistic one or even faster. For a class of potentials which arise in some existing realizations of Anderson localization atypical behavior is found.Comment: 11 pages, 2 figure

    Glassy dynamics in strongly anharmonic chains of oscillators

    Get PDF
    We review the mechanism for transport in strongly anharmonic chains of oscillators near the atomic limit where all oscillators are decoupled. In this regime, the motion of most oscillators remains close to integrable, i.e. quasi-periodic, on very long time scales, while a few chaotic spots move very slowly and redistribute the energy across the system. The material acquires several characteristic properties of dynamical glasses: intermittency, jamming and a drastic reduction of the mobility as a function of the thermodynamical parameters. We consider both classical and quantum systems, though with more emphasis on the former, and we discuss also the connections with quenched disordered systems, which display a similar physics to a large extent.Comment: Review paper. Invited submission to the CRAS (special issue on Fourier's legacy). 16 pages, 3 figure

    Many-body localization and quantum ergodicity in disordered long-range Ising models

    Get PDF
    Ergodicity in quantum many-body systems is - despite its fundamental importance - still an open problem. Many-body localization provides a general framework for quantum ergodicity, and may therefore offer important insights. However, the characterization of many-body localization through simple observables is a difficult task. In this article, we introduce a measure for distances in Hilbert space for spin-1/2 systems that can be interpreted as a generalization of the Anderson localization length to the many-body Hilbert space. We show that this many-body localization length is equivalent to a simple local observable in real space, which can be measured in experiments of superconducting qubits, polar molecules, Rydberg atoms, and trapped ions. Using the many-body localization length and a necessary criterion for ergodicity that it provides, we study many-body localization and quantum ergodicity in power-law-interacting Ising models subject to disorder in the transverse field. Based on the nonequilibrium dynamical renormalization group, numerically exact diagonalization, and an analysis of the statistics of resonances we find a many-body localized phase at infinite temperature for small power-law exponents. Within the applicability of these methods, we find no indications of a delocalization transition.Comment: 11 pages, 2 figures, extended version, added reference

    Thouless time analysis of Anderson and many-body localization transitions

    Full text link
    Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for disordered quantum many-body systems with results for 3D and 5D Anderson models, we argue that the two-parameter scaling breaks down in the vicinity of the transition to the localized phase signalling subdiffusive dynamics.Comment: 2nd version, several minor changes in text and discussions expanded, 4+1 pages, 3+1 figures, comments welcom
    • …
    corecore