11,349 research outputs found

    Dynamic Complexity of Planar 3-connected Graph Isomorphism

    Full text link
    Dynamic Complexity (as introduced by Patnaik and Immerman) tries to express how hard it is to update the solution to a problem when the input is changed slightly. It considers the changes required to some stored data structure (possibly a massive database) as small quantities of data (or a tuple) are inserted or deleted from the database (or a structure over some vocabulary). The main difference from previous notions of dynamic complexity is that instead of treating the update quantitatively by finding the the time/space trade-offs, it tries to consider the update qualitatively, by finding the complexity class in which the update can be expressed (or made). In this setting, DynFO, or Dynamic First-Order, is one of the smallest and the most natural complexity class (since SQL queries can be expressed in First-Order Logic), and contains those problems whose solutions (or the stored data structure from which the solution can be found) can be updated in First-Order Logic when the data structure undergoes small changes. Etessami considered the problem of isomorphism in the dynamic setting, and showed that Tree Isomorphism can be decided in DynFO. In this work, we show that isomorphism of Planar 3-connected graphs can be decided in DynFO+ (which is DynFO with some polynomial precomputation). We maintain a canonical description of 3-connected Planar graphs by maintaining a database which is accessed and modified by First-Order queries when edges are added to or deleted from the graph. We specifically exploit the ideas of Breadth-First Search and Canonical Breadth-First Search to prove the results. We also introduce a novel method for canonizing a 3-connected planar graph in First-Order Logic from Canonical Breadth-First Search Trees

    Graphs, Matrices, and the GraphBLAS: Seven Good Reasons

    Get PDF
    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istc- bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.Comment: 10 pages; International Conference on Computational Science workshop on the Applications of Matrix Computational Methods in the Analysis of Modern Dat
    • …
    corecore