823 research outputs found

    The DIGMAP geo-temporal web gazetteer service

    Get PDF
    This paper presents the DIGMAP geo-temporal Web gazetteer service, a system providing access to names of places, historical periods, and associated geo-temporal information. Within the DIGMAP project, this gazetteer serves as the unified repository of geographic and temporal information, assisting in the recognition and disambiguation of geo-temporal expressions over text, as well as in resource searching and indexing. We describe the data integration methodology, the handling of temporal information and some of the applications that use the gazetteer. Initial evaluation results show that the proposed system can adequately support several tasks related to geo-temporal information extraction and retrieval

    Low-cost multipurpose sensor network integrated with iot and webgis for fire safety concerns

    Get PDF
    Fire emergencies cause severe damage to Brazilian federal universities. An appropriate and efficient tool to prevent or detect such events early is multisensory networks from the Internet of Things (IoT). In this study, we present the stages of development of a WebGIS system which integrates the IoT that allows the detection and helps manage such incidents. The approach consists of a network of multipurpose sensors that can identify different sources of fire hazards. If a potential source is registered, information about environmental conditions is transmitted in real-time to the system. Depending on the severity level, an alert is issued to WebGIS. Location is represented on a map. The entire system consists of single-board devices. Software components are based on open-source tools. The whole network only needs little power and, therefore, theoretically, could be carried out as an autonomous system powered by batteries. The entire system has been tested with flame, temperature, gas, smoke, and humidity sensors. The experiments allowed us to show its potential, formulate recommendations and indications for future studies

    NSF-CNPq Collaborative Research on Integrating Geospatial Information

    Get PDF
    Under this project, researchers at the University of Maine and the Brazilian National Institute for Space Research (INPE) are collaborating to study new models for integrating geographic information. The two research teams complement each other, providing a unique synergy in conceptual modeling and systems development. Long-term visits by Brazilian researchers assure a tight cooperation, and provide for integrated research and education. The work focuses on the semantics of spatial data collections that are stored in geographic information systems or spatial databases. Such collections often have diverse database schemas and lack conventions that would make them easily compatible, so that they could be combined to perform an integrated analysis. The goal of this research is to develop computational models that will allow us to compare, harmonize, and integrate geographic information across different ontologies and different spatial data models. The approach consists of a new integrated method to assess similarity based on common parts, functions, and attributes. In these similarity assessments, different contexts are considered through the operations a user intents to perform with the harmonized data. The results of this project will provide meaningful comparisons and integration of geospatial information, enabling better interoperation among geographic information systems. http://www.spatial.maine.edu/~max/CNPq.htm

    Small inner marsh area delimitation using remote sensing spectral indexes and decision tree method in southern Brazil

    Get PDF
    Revista oficial de la Asociación Española de Teledetección[EN] Vast small inner marsh (SIM) areas have been lost in the past few decades through the conversion to agricultural, urban and industrial lands. The remaining marshes face several threats such as drainage for agriculture, construction of roads and port facilities, waste disposal, among others. This study integrates 17 remote sensing spectral indexes and decision tree (DT) method to map SIM areas using Sentinel 2A images from Summer and Winter seasons. Our results showed that remote sensing indexes, although not developed specifically for wetland delimitation, presented satisfactory results in order to classify these ecosystems. The indexes that showed to be more useful for marshes classification by DT techniques in the study area were NDTI, BI, NDPI and BI_2, with 25.9%, 17.7%, 11.1% and 0.8%, respectively. In general, the Proportion Correct (PC) found was 95.9% and 77.9% for the Summer and Winter images respectively. We hypothetize that this significant PC variation is related to the rice-planting period in the Summer and/or to the water level oscillation period in the Winter. For future studies, we recommend the use of active remote sensors (e.g., radar) and soil maps in addition to the remote sensing spectral indexes in order to obtain better results in the delimitation of small inner marsh areas.[ES] En las últimas décadas se han perdido grandes áreas de pequeñas marismas interiores (SIM) a través de la conversión a tierras agrícolas, urbanas e industriales. Las marismas restantes enfrentan varias amenazas, como el drenaje para la agricultura, la construcción de carreteras e instalaciones portuarias, la eliminación de residuos, entre otras. Este estudio integra 17 índices espectrales de teledetección y un método basado en árboles de decisión (DT) para cartografiar áreas de pequeñas marismas interiores utilizando imágenes del satélite Sentinel 2A de verano e invierno. Los resultados muestran que los índices de teledetección, aunque no han sido desarrollados específicamente para la delimitación de marismas, presentan resultados satisfactorios para clasificar estos ecosistemas. Los índices que demostraron ser más útiles para la clasificación de marismas mediante técnicas de DT en el área de estudio fueron el NDTI, BI, NDPI y BI_2, con 25.9%, 17.7%, 11.1% y 0.8%, respectivamente. En general, la proporción correcta encontrada fue de 95.9% y 77.9% para las imágenes de verano e invierno, respectivamente. Nuestra hipótesis es que esta variación significativa de la proporción correcta está relacionada con el período de siembra del arroz en verano y/o con el período de oscilación del nivel del agua en invierno. Para futuras investigaciones, recomendamos el uso de sensores remotos activos (por ejemplo, radar) y mapas de suelo además de los índices espectrales de teledetección para obtener mejores resultados en la delimitación de pequeñas áreas de marismas interiores.João Paulo Delapasse Simioni thanks the CAPES agency for providing a doctoral fellowship. The au-thors acknowledge the Center for Remote Sensing and Meteorology (CEPSRM) at the Federal University of Rio Grande do Sul (UFRGS) for the support provided for this research.Simioni, JPD.; Guasselli, LA.; Ruiz, LFC.; Nascimento, VF.; De Oliveira, G. (2018). Delimitación de pequeñas marismas interiores mediante índices espectrales y árboles de decisión en el sur de Brasil. Revista de Teledetección. (52):55-66. doi:10.4995/raet.2018.10366SWORD556652Artigas, F. J., Yang, J. 2006. Spectral discrimination of marsh vegetation types in the New Jersey Meadowlands, USA. Wetlands, 26(1), 271. https:// doi.org/10.1672/0277-5212(2006)26[271:sdomvt]2. 0.co;2Belloli, T. F. 2016. Environmental Impacts Due to Rice, Large Banhado Environmental Protection Area - RS. Federal University of Rio Grande do Sul. Retrieved from https://www.lume.ufrgs.br/bitstream/ handle/10183/158968/001023034.pdf?sequence=1Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., Marani, M. 2006. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1), 54-67. https://doi.org/10.1016/j.rse.2006.06.006Canadian Wetland Inventory Technical Group. 2016. Canada Wetland Inventory (Data Model). Stonewall. Retrieved from http://www.ducks.ca/assets/2017/01/ CWIDMv7_01_E.pdfClevers, J. G. P. W., Leeuwen, H. J. C. Van, Sensing, R., Verhoef, W. 1989. Estimanting apar by means of vegetation indeces: a sensitivity analysis. XXIX ISPRS Congress Technical Commission VII: Interpretation of Photographic and Remote Sensing Data, 691-698.Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. https:// doi.org/10.1016/0034-4257(91)90048-BDeering, D. W. 1975. Measuring forage production of grazing units from Landsat MSS data. Proceedings of 10th International Symposium on Remote Sensing of Environment, 1975, 1169-1178.Delegido, J., Verrelst, J., Alonso, L., Moreno, J. 2011. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063-7081. https://doi.org/10.3390/s110707063Di Vittorio, C. A., Georgakakos, A. P. 2018. Land cover classification and wetland inundation mapping using MODIS. Remote Sensing of Environment, 204, 1-17. https://doi.org/10.1016/j.rse.2017.11.001Dong, Z., Wang, Z., Liu, D., Song, K., Li, L., Jia, M., Ding, Z. 2014. Mapping Wetland Areas Using Landsat-Derived NDVI and LSWI: A Case Study of West Songnen Plain, Northeast China. Journal of the Indian Society of Remote Sensing, 42(3), 569-576. https://doi.org/10.1007/s12524-013-0357-1Dvorett, D., Davis, C., Papeş, M. 2016. Mapping and Hydrologic Attribution of Temporary Wetlands Using Recurrent Landsat Imagery. Wetlands, 36(3), 431- 443. https://doi.org/10.1007/s13157-016-0752-9Environmental Protection Agency. 2001. Functions and Values of Wetlands. Watershed Academy Web. Washington. Retrieved from https://www.epa.gov/wetlandsfunctionsvaluesEscadafal, R. 1989. Remote sensing of arid soil surface color with Landsat thematic mapper. Advances in Space Research, 9(1), 159-163. https://doi.org/10.1016/0273-1177(89)90481-XEtchelar, C. B. 2017. Erosive Processes in Wetlands. Rio Grande do Sul Federal University. Retrieved from https://www.lume.ufrgs.br/bitstream/ handle/10183/171041/001054625.pdf?sequence=1Fariña, J. M., He, Q., Silliman, B. R., Bertness, M. D. 2017. Biogeography of salt marsh plant zonation on the Pacific coast of South America. Journal of Biogeography, 12, 238-247. https://doi.org/10.1111/ jbi.13109Fluet-Chouinard, E., Lehner, B., Rebelo, L. M., Papa, F., Hamilton, S. K. 2015. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sensing of Environment, 158, 348-361. https://doi.org/10.1016/j.rse.2014.10.015Friedl, M.A. M. A., Brodley, C. E. C. E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399- 409. https://doi.org/10.1016/S0034-4257(97)00049-7Gao, B. C. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257- 266. https://doi.org/10.1016/S0034-4257(96)00067-3Gedan, K. B., Crain, C. M., Bertness, M. D. 2009. Smallmammal herbivore control of secondary succession in New-England tidal marshes. Ecology, 90(2), 430- 440. https://doi.org/10.1890/08-0417.1Gitelson, A. A., Kaufman, Y. J., Merzlyak, M. N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295- 309. https://doi.org/10.1016/0034-4257(88)90106-XJensen, J. R. 2007. Remote sensing of the environment : an earth resource perspective. Pearson Prentice Hall.Judd, C., Steinberg, S., Shaughnessy, F., Crawford, G. 2007. Mapping salt marsh vegetation using aerial hyperspectral imagery and linear unmixing in Humboldt Bay, California. Wetlands, 27(4), 1144-1152. https://doi.org/10.1672/0277- 5212(2007)27[1144:msmvua]2.0.co;2Junk. 2013. Definição e Classificação das Áreas Úmidas (AUs) Brasileiras : Base Científica para uma Nova Política de Proteção e Manejo Sustentável Prefácio : Lista dos autores e suas instituições : Centro de Pesquisa Do Pantanal, BrazilJunk, W. J., Bayley, P. B., Sparks, R. E. 1989. The Flood Pulse Concept in River-Floodplain Systems. International Large River Symposium.Junk, W. J., Piedade, M. F. 2015. Áreas Úmidas (AUs) Brasileiras: Avanços e Conquistas Recentes. Boletim Ablimno, 41(2), 20-24.Junk, W. J., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L. D., Agostinho, A. A. 2014. Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(1), 5-22. https://doi. org/10.1002/aqc.2386Kandus, P., Minotti, P., Malvárez, A. I. 2008. Distribution of wetlands in Argentina estimated from soil charts. Acta Scientiarum - Biological Sciences, 30(4), 403-409. https://doi.org/10.4025/actascibiolsci.v30i4.5870Kaplan, G., Avdan, U. 2017. Mapping and Monitoring Wetlands Using SENTINEL 2 Satellite Imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV, 271-277. https:// doi.org/10.5194/isprs-annals-IV-4-W4-271-2017Kaplan, G., Avdan, U. 2017. Wetland Mapping Using Sentinel 1 SAR Data. In Suha Ozden, R. Cengiz Akbulak, Cuneyt Erenoglu, Oznur Karaca, Faize Saris, & Mustafa Avcioglu (Eds.), International Symposium on GIS Applications in Geography & Geosciences.Kaufman, Y., Tanre, D. 1992. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2). https://doi.org/10.1109/36.134076Kulawardhana, R. W., Thenkabail, P. S., Vithanage, J., Biradar, C., Islam, M. A. a, Gunasinghe, S., Alankara, R. 2007. Evaluation of the wetland mapping methods using Landsat ETM+ and SRTM data. Journal of Spatial Hydrology, 7(2), 62-96. https://doi. org/10.1017/CBO9780511806049Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., Lafaye, M. 2007. Classification of ponds from highspatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106(1), 66-74. https://doi.org/10.1016/j. rse.2006.07.012Leite, M. G., Guasselli, L. A. 2013. Spatio-temporal dynamics of aquatic macrophytes in Banhado Grande, Gravataí River basin,. Para Onde!?, 7(1), 17-24.Liu, L., Liu, Y. H., Liu, C. X., Wang, Z., Dong, J., Zhu, G. F., Huang, X. 2013. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecological Engineering, 53, 138-143. https://doi.org/10.1016/j. ecoleng.2012.12.033Mahdavi, S., Salehi, B., Amani, M., Granger, J. E., Brisco, B., Huang, W., Hanson, A. 2017. ObjectBased Classification of Wetlands in Newfoundland and Labrador Using Multi-Temporal PolSAR Data. Canadian Journal of Remote Sensing, 43(5), 432-450. https://doi.org/10.1080/07038992.2017.1342206Maltchik, L., Rolon, A. S., Guadagnin, D. L., Stenert, C. 2004. Wetlands of Rio Grande do Sul, Brazil: a classification with emphasis on plant communities. Acta Limnol. Bras, 16(2), 137-151.Mao, R., Ye, S.-Y., Zhang, X.-H. 2018. SoilAggregate-Associated Organic Carbon Along Vegetation Zones in Tidal Salt Marshes in the Liaohe Delta. CLEAN - Soil, Air, Water, 1-7. https://doi.org/10.1002/clen.201800049McFeeters, S. K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714Mcowen, C. J., Weatherdon, L. V, Bochove, J.-W. Van, Sullivan, E., Blyth, S., Zockler, C., Fletcher, S. 2017. A global map of saltmarshes. Biodiversity Data Journal, 5(5), e11764. https://doi.org/10.3897/BDJ.5.e11764Miranda, C. de S., Paranho Filho, A. C., Pott, A. 2018. Changes in vegetation cover of the Pantanal wetland detected by vegetation index: a strategy for conservation. Biota Neotropica, 18(1), 1-6. https://doi.org/10.1590/1676-0611-bn-2016-0297Mondal, I., Bandyopadhyay, J. 2014. Coastal Wetland Modeling Using Geoinformatics Technology of Namkhana Island, South 24 Parganas, WB, India. Open Access Library Journal, 975, 1-17. https://doi.org/10.4236/oalib.1100975Nielsen, S. 1994. Geomorfologia da bacia do rio GravataíRS. In Bacia do rio Gravataí-RS: informações básicas para a gestão territorial (pp. 1-18). Porto Alegre: Proteger.Nunes da Cunha, C., Piedade, M. T. F., Junk, W. J. 2015. Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. EdUFMT (Vol. 1). Cuiaba. https://doi.org/10.1017/CBO9781107415324.004Pearson, R. L., Miller, L. D. 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Remote Sensing of Environment, 8, 1355-1365.Pontius, R. G., Millones, M. 2011. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. https://doi.org/10.1016/0034-4257(94)90134-1Ramos, R. A., Pasqualetto, A. I., Balbueno, R. A., Quadros, E. L. L. de, Neves, D. D. das. 2014. Mapeamento e diagnóstico de áreas úmidas no Rio Grande do Sul, com o uso de ferramentas de geoprocessamento. In Anais do Simposio de Áreas Protegidas (pp. 17-21). Viçosa.Ramsar. 2002. A Framework for Wetland Inventory. 8th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands. Valencia. Retrieved from http://archive.ramsar.org/pdf/inventoryframework-2002.pdfRichardson, A. J., Wiegand, C. L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541-1552.Rossato, M. S. 2011. Os climas do Rio Grande do Sul: variabilidade, tendências e tipologia. Universidade Federal do Rio Grande do Sul.Rouse, J. W., Hass, R. H., Schell, J. A., Deering, D. W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, 1, 309-317. https://doi.org/citeulike-article-id:12009708Ruiz, L. F. C., Caten, A. ten, Dalmolin, R. S. D. 2014. Árvore de decisão e a densidade mínima de amostras no mapeamento da cobertura da terra. Ciência Rural, 44(6), 1001-1007. https://doi.org/10.1590/S0103-84782014000600008Sakané, N., Alvarez, M., Becker, M., Böhme, B., Handa, C., Kamiri, H. W., Langensiepen, M., Menz, G., Misana, S., Mogha, N. G., Möseler, B. M., Mwita, E. J., Oyieke, H. A., Van Wijk, M. T. 2011. Classification, characterisation, and use of small wetlands in East Africa. Wetlands, 31, 1103. https://doi.org/10.1007/s13157-011-0221-4Sharma, A., Panigrahy, S., Singh, T. S., Patel, J. G., Tanwar, H. 2014. Wetland Information System Using Remote Sensing and GIS in Himachal Pradesh , India. Asian Journal of Geoinformatics, 14(4), 13-22.Sharpe, P. J., Kneipp, G., Forget, A. 2016. Comparison of Alternative Approaches for Wetlands Mapping: A Case Study from three U.S. National Parks. Wetlands, 36(3), 547-556. https://doi.org/10.1007/s13157-016-0764-5Silva, R. C. da. 2016. Estudo da dinâmica da fragilidade ambiental na Bacia Hidrográfica do Rio Gravataí, RS. Universidade Federal da Bahia.Simioni, J. P. D., Guasselli, L. A., Etchelar, C. B. 2017. Connectivity among Wetlands of EPA of Banhado Grande, RS Conetividade entre Áreas Úmidas, APA do Banhado Grande, RS. Brazilian Journal of Water Resources, 22(15). https://doi.org/10.1590/2318-0331.011716096Stefano, L. de. 2003. WWF ' s Water and Wetland Index Summary of Water Framework Directive results. WWF European Living Waters Programme c/o. San Francisco.Subramaniam, S., Saxena, M. 2011. Automated algorithm for extraction of wetlands from IRS resourcesat LISS III data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 193-198). Bhopal.Teixeira, S. G. 2011. Radar de abertura sintética aplicado ao mapeamento e reconhecimento de zonas úmidas costeiras. Universidade Federal do Pará.Visser, J. M., Sasser, C. E. 1999. Marsh Vegetation of the Mississippi River Deltaic Plain. Estuaries, 21(4B), 818-828.Walsh, N., Bhattasali, N., Chay, F. 2014. Mapping Tidal Salt Marshes.White, D. C., Lewis, M. M., Green, G., Gotch, T. B. 2016. A generalizable NDVI-based wetland delineation indicator for remote monitoring of groundwater flows in the Australian Great Artesian Basin. Ecological Indicators, 60, 1309-1320. https://doi.org/10.1016/j.ecolind.2015.01.032Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179Yan, D., Wünnemann, B., Hu, Y., Frenzel, P., Zhang, Y., Chen, K. 2017. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years. Quaternary Science Reviews, 162, 42-59.Zhou, Q., Jing, Z., Jiang, S. 2003. Remote sensing image fusion for different spectral and spatial resolutions with bilinear resampling wavelet transform. In Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems 2, 1206-1213. Shanghai: IEEE. https://doi.org/10.1109/ITSC.2003.125267

    Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal)

    Get PDF
    Madeira Island is a biodiversity hotspot due to its high number of endemic/native plant species. In this work we developed and assessed a methodological framework to produce a RapidEye-based vegetation map. Reasonable accuracies were achieved for a 26 categories classification scheme in two different seasons. We tested pixel and object based approaches and the inclusion of a vegetation index band on top of the pre-processed RapidEye bands stack. Object based generally showed to outperform pixel based classification approaches except for linear or highly scattered classes. The addition of a vegetation index to the workflow increased the separability of the Jeffrey-Matusita least separable class pairs, but not necessarily the overall accuracy. The Pontius accuracy assessment highlighted class specific accuracy tradeoffs related to different combinations of the inputs and methods. The approach to be used, in conclusion, should be carefully considered on the basis of the desired result.info:eu-repo/semantics/publishedVersio

    The impact of spatial data redundancy on SOLAP query performance

    Get PDF
    Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.FAPESPCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)INEPFINE
    corecore