1,191 research outputs found

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    On the Complexity of ATL and ATL* Module Checking

    Full text link
    Module checking has been introduced in late 1990s to verify open systems, i.e., systems whose behavior depends on the continuous interaction with the environment. Classically, module checking has been investigated with respect to specifications given as CTL and CTL* formulas. Recently, it has been shown that CTL (resp., CTL*) module checking offers a distinctly different perspective from the better-known problem of ATL (resp., ATL*) model checking. In particular, ATL (resp., ATL*) module checking strictly enhances the expressiveness of both CTL (resp., CTL*) module checking and ATL (resp. ATL*) model checking. In this paper, we provide asymptotically optimal bounds on the computational cost of module checking against ATL and ATL*, whose upper bounds are based on an automata-theoretic approach. We show that module-checking for ATL is EXPTIME-complete, which is the same complexity of module checking against CTL. On the other hand, ATL* module checking turns out to be 3EXPTIME-complete, hence exponentially harder than CTL* module checking.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations—restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that in most applications, approaching CTL model checking by parallelism will not result in the desired speed up. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL +, and ECTL +

    Refinement Modal Logic

    Full text link
    In this paper we present {\em refinement modal logic}. A refinement is like a bisimulation, except that from the three relational requirements only `atoms' and `back' need to be satisfied. Our logic contains a new operator 'all' in addition to the standard modalities 'box' for each agent. The operator 'all' acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier 'all' can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal mu-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness

    Modal mu-calculi

    Get PDF
    corecore