43 research outputs found

    Compressing Branch-and-Bound Trees

    Full text link
    A branch-and-bound (BB) tree certifies a dual bound on the value of an integer program. In this work, we introduce the tree compression problem (TCP): Given a BB tree T that certifies a dual bound, can we obtain a smaller tree with the same (or stronger) bound by either (1) applying a different disjunction at some node in T or (2) removing leaves from T? We believe such post-hoc analysis of BB trees may assist in identifying helpful general disjunctions in BB algorithms. We initiate our study by considering computational complexity and limitations of TCP. We then conduct experiments to evaluate the compressibility of realistic branch-and-bound trees generated by commonly-used branching strategies, using both an exact and a heuristic compression algorithm

    Annales Mathematicae et Informaticae (42.)

    Get PDF

    Annales Mathematicae et Informaticae 2013

    Get PDF

    A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management

    Get PDF
    We study the problem of integrated staffing and scheduling under demand uncertainty. This problem is formulated as a two-stage stochastic integer program with mixed-integer recourse. The here-and-now decision is to find initial staffing levels and schedules. The wait-and-see decision is to adjust these schedules at a time closer to the actual date of demand realization. We show that the mixed-integer rounding inequalities for the second-stage problem convexify the recourse function. As a result, we present a tight formulation that describes the convex hull of feasible solutions in the second stage. We develop a modified multicut approach in an integer L-shaped algorithm with a prioritized branching strategy. We generate twenty instances (each with more than 1.3 million integer and 4 billion continuous variables) of the staffing and scheduling problem using 3.5 years of patient volume data from Northwestern Memorial Hospital. Computational results show that the efficiency gained from the convexification of the recourse function is further enhanced by our modifications to the L-shaped method. The results also show that compared with a deterministic model, the two-stage stochastic model leads to a significant cost savings. The cost savings increase with mean absolute percentage errors in the patient volume forecast

    Lattice reformulation cuts

    Get PDF
    Here we consider the question whether the lattice reformulation of a linear integer program can be used to produce effective cutting planes. In particular, we aim at deriving split cuts that cut off more of the integrality gap than Gomory mixed-integer (GMI) inequalities generated from LP-tableaus, while being less computationally demanding than generating the split closure. We consider integer programs (IPs) in the form max{ Ax=b x =Zn+}, where the reformulation takes the form max\{cx +cQ> -xu u =Zn-m Z n - m\}, where Q is an n (n - m) integer matrix. Working on an optimal LP-tableau in the u -space allows us to generate n - m GMIs in addition to the m GMIs associated with the optimal tableau in the x space. These provide new cuts that can be seen as GMIs associated to n - m nonelementary split directions associated with the reformulation matrix \Q . On the other hand it turns out that the corner polyhedra associated to an LP basis and the GMI or split closures are the same whether working in the x or u spaces. Our theoretical derivations are accompanied by an illustrative computational study. The computations show that the effectiveness of the cuts generated by this approach depends on the quality of the reformulation obtained by the reduced basis algorithm used to generate Q and that it is worthwhile to generate several rounds of such cuts. However, the effectiveness of the cuts deteriorates as the number of constraints is increased

    Multipartite Quantum States and their Marginals

    Full text link
    Subsystems of composite quantum systems are described by reduced density matrices, or quantum marginals. Important physical properties often do not depend on the whole wave function but rather only on the marginals. Not every collection of reduced density matrices can arise as the marginals of a quantum state. Instead, there are profound compatibility conditions -- such as Pauli's exclusion principle or the monogamy of quantum entanglement -- which fundamentally influence the physics of many-body quantum systems and the structure of quantum information. The aim of this thesis is a systematic and rigorous study of the general relation between multipartite quantum states, i.e., states of quantum systems that are composed of several subsystems, and their marginals. In the first part, we focus on the one-body marginals of multipartite quantum states; in the second part, we study general quantum marginals from the perspective of entropy.Comment: PhD thesis, ETH Zurich. The first part contains material from arXiv:1208.0365, arXiv:1204.0741, and arXiv:1204.4379. The second part is based on arXiv:1302.6990 and arXiv:1210.046

    Packing and covering in combinatorics

    Get PDF

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Subject index volumes 1–92

    Get PDF
    corecore