1,761 research outputs found

    BRANCHING TIME LOGIC, PERFECT INFORMATION GAMES AND BACKWARD INDUCTION

    Get PDF
    The logical foundations of game-theoretic solution concepts have so far been developed within the confines of epistemic logic. In this paper we turn to a different branch of modal logic, namely temporal logic, and propose to view the solution of a game as a complete prediction about future play. We extend the branching time framework by adding agents and by defining the notion of prediction. We show that perfect information games are a special case of extended branching time frames and that the backward-induction solution is a prediction. We also provide a characterization of backward induction in terms of the property of internal consistency of prediction.

    Reasoning about strategies and rational play in dynamic games

    Get PDF
    We discuss a number of conceptual issues that arise in attempting to capture, in dynamic games, the notion that there is "common understanding" among the players that they are all rational.Belief revision, common belief, counterfactual, dynamic game, model of a game, rationality

    (Mechanical) Reasoning on Infinite Extensive Games

    Get PDF
    In order to better understand reasoning involved in analyzing infinite games in extensive form, we performed experiments in the proof assistant Coq that are reported here.Comment: 11

    Decisions, actions, and games: A logical perspective

    Get PDF

    A Logic for True Concurrency

    Full text link
    We propose a logic for true concurrency whose formulae predicate about events in computations and their causal dependencies. The induced logical equivalence is hereditary history preserving bisimilarity, and fragments of the logic can be identified which correspond to other true concurrent behavioural equivalences in the literature: step, pomset and history preserving bisimilarity. Standard Hennessy-Milner logic, and thus (interleaving) bisimilarity, is also recovered as a fragment. We also propose an extension of the logic with fixpoint operators, thus allowing to describe causal and concurrency properties of infinite computations. We believe that this work contributes to a rational presentation of the true concurrent spectrum and to a deeper understanding of the relations between the involved behavioural equivalences.Comment: 31 pages, a preliminary version appeared in CONCUR 201

    An Algorithmic Framework for Strategic Fair Division

    Full text link
    We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the nn agents a 1/n1/n-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations
    corecore