67 research outputs found

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF

    Branch-and-Price-and-Cut for the Active-Passive Vehicle-Routing Problem

    Get PDF
    This paper presents a branch-And-price-And-cut algorithm for the exact solution of the active-passive vehicle-routing problem (APVRP). The APVRP covers a range of logistics applications where pickup-And-delivery requests necessitate a joint operation of active vehicles (e.g., trucks) and passive vehicles (e.g., loading devices such as containers or swap bodies). The objective is to minimize aweighted sum of the total distance traveled, the total completion time of the routes, and the number of unserved requests. To this end, the problem supports a flexible coupling and decoupling of active and passive vehicles at customer locations. Accordingly, the operations of the vehicles have to be synchronized carefully in the planning. The contribution of the paper is twofold: First, we present an exact branch-And-price-And-cut algorithm for this class of routing problems with synchronization constraints. To our knowledge, this algorithm is the first such approach that considers explicitly the temporal interdependencies between active and passive vehicles. The algorithm is based on a nontrivial network representation that models the logical relationships between the different transport tasks necessary to fulfill a request as well as the synchronization of the movements of active and passive vehicles. Second, we contribute to the development of branch-And-price methods in general, in that we solve, for the first time, an ng-path relaxation of a pricing problem with linear vertex costs by means of a bidirectional labeling algorithm. Computational experiments show that the proposed algorithm delivers improved bounds and solutions for a number of APVRP benchmark instances. It is able to solve instances with up to 76 tasks, four active, and eight passive vehicles to optimality within two hours of CPU time

    The multi-depot VRP with vehicle interchanges

    Get PDF
    In real-world logistic operations there are a lot of situations that can be exploited to get better operational strategies. It is important to study these new alternatives, because they can represent significant cost reductions to the companies working with physical distribution. This thesis defines the Multi-Depot Vehicle Routing Problem with Vehicle Interchanges (MDVRPVI). In this problem, both vehicle capacities and duration limits on the routes of the drivers are imposed. To favor a better utilization of the available capacities and working times, it is allowed to combine pairs of routes at predefined interchange locations. The objective of this thesis is to analyze and solve the Multi-Depot Vehicle Routing Problem adding the possibility to interchange vehicles at predefined points. With this strategy, it is possible to reduce the total costs and the number of used routes with respect to the classical approach: The Multi-Depot Vehicle Routing Problem (MDVRP). It should be noted that the MDVRP is more challenging and sophisticated than the single-depot Vehicle Routing Problem (VRP). Besides, most exact algorithms for solving the classical VRP are difficult to adapt in order to solve the MDVRP (Montoya-Torres et al., 2015). From the complexity point of view, the MDVRPVI is NP-Hard, since it is an extension of the classical problem, which is already NP-Hard. We present a tight bound on the costs savings that can be attained allowing interchanges. Three integer programming formulations are proposed based on the classical vehicle-flow formulations of the MDVRP. One of these formulations was solved with a branch-and-bound algorithm, and the other two formulations, with branch-and-cut algorithms. Due to its great symmetry, the first formulation is only able to solve small instances. To increase the dimension of the instances used, we proposed two additional formulations that require one or more families of constraints of exponential size. In order to solve these formulations, we had to design and implement specific branch-and-cut algorithms. For these algorithms we implemented specific separation methods for constraints that had not previously been used in other routing problems. The computational experience performed evidences the routing savings compared with the solutions obtained with the classical approach and allows to compare the efficacy of the three solution methods proposed.En les operacions logístiques del món real es donen situacions que poden ser explotades per obtenir millors estratègies operacionals. És molt important estudiar aquestes noves alternatives, perquè poden representar una reducció significativa de costos per a les companyies que treballen en distribució de mercaderies. En aquesta tesi es defineix el Problema d'Enrutament de Vehicles amb Múltiples Dipòsits i Intercanvi de Vehicles (MDVRPVI). En aquest problema, es consideren tant la capacitat dels vehicles com els límits de duració de les rutes dels conductors. Per tal de millorar la utilització de les capacitats i temps de treball disponibles, es permet combinar parelles de rutes en punts d'intercanvi predefinits. L'objectiu d'aquesta tesi és analitzar i resoldre el problema d'Enrutament de Vehicles amb Múltiples Dipòsits, on es permet l'intercanvi de vehicles. Amb aquesta estratègia, és possible reduir els costos totals i el nombre de les rutes utilitzades respecte l'enfocament clàssic: el problema d'Enrutament de Vehicles amb Múltiples Dipòsits (MDVRP). Cal assenyalar que el MDRVP és més desafiant i sofisticat que el problema d'Enrutament de Vehicles d'un únic dipòsit (VRP). A més, molts algoritmes exactes per resoldre el VRP clàssic son complicats d'adaptar per resoldre el MDVRP (Montoya-Torres et al., 2015). Des del punt de vista de la complexitat, el MDRVPVI és NP-Dur, perquè és una extensió del problema clàssic, que també ho és. Presentem una cota ajustada de l'estalvi en els costos de distribució que es pot obtenir permetent els intercanvis. Es proposen tres formulacions de programació sencera basades en la formulació clàssica “vehicle-flow” del MDVRP. La primera formulació, degut a la seva grandària i la seva simetria, només permet resoldre instàncies molt petites. Per augmentar la dimensió de les instàncies abordables, es proposen dues formulacions addicionals que requereixen una o vàries famílies de restriccions de mida exponencial. Per això, per tal de resoldre el problema amb aquestes formulacions, ha calgut dissenyar i implementar sengles algorismes de tipus branch-and-cut. En aquests algorismes s'han implementat mètodes de separació específics per a les restriccions que no s'havien utilitzat prèviament en altres problemes de rutes. L’experiència computacional realitzada evidencia els estalvis obtinguts comparació amb les solucions corresponents l'enfocament clàssic. També es compara l’eficàcia dels tres mètodes propostes a l'hora de resoldre el problema.Postprint (published version

    The multi-depot VRP with vehicle interchanges

    Get PDF
    In real-world logistic operations there are a lot of situations that can be exploited to get better operational strategies. It is important to study these new alternatives, because they can represent significant cost reductions to the companies working with physical distribution. This thesis defines the Multi-Depot Vehicle Routing Problem with Vehicle Interchanges (MDVRPVI). In this problem, both vehicle capacities and duration limits on the routes of the drivers are imposed. To favor a better utilization of the available capacities and working times, it is allowed to combine pairs of routes at predefined interchange locations. The objective of this thesis is to analyze and solve the Multi-Depot Vehicle Routing Problem adding the possibility to interchange vehicles at predefined points. With this strategy, it is possible to reduce the total costs and the number of used routes with respect to the classical approach: The Multi-Depot Vehicle Routing Problem (MDVRP). It should be noted that the MDVRP is more challenging and sophisticated than the single-depot Vehicle Routing Problem (VRP). Besides, most exact algorithms for solving the classical VRP are difficult to adapt in order to solve the MDVRP (Montoya-Torres et al., 2015). From the complexity point of view, the MDVRPVI is NP-Hard, since it is an extension of the classical problem, which is already NP-Hard. We present a tight bound on the costs savings that can be attained allowing interchanges. Three integer programming formulations are proposed based on the classical vehicle-flow formulations of the MDVRP. One of these formulations was solved with a branch-and-bound algorithm, and the other two formulations, with branch-and-cut algorithms. Due to its great symmetry, the first formulation is only able to solve small instances. To increase the dimension of the instances used, we proposed two additional formulations that require one or more families of constraints of exponential size. In order to solve these formulations, we had to design and implement specific branch-and-cut algorithms. For these algorithms we implemented specific separation methods for constraints that had not previously been used in other routing problems. The computational experience performed evidences the routing savings compared with the solutions obtained with the classical approach and allows to compare the efficacy of the three solution methods proposed.En les operacions logístiques del món real es donen situacions que poden ser explotades per obtenir millors estratègies operacionals. És molt important estudiar aquestes noves alternatives, perquè poden representar una reducció significativa de costos per a les companyies que treballen en distribució de mercaderies. En aquesta tesi es defineix el Problema d'Enrutament de Vehicles amb Múltiples Dipòsits i Intercanvi de Vehicles (MDVRPVI). En aquest problema, es consideren tant la capacitat dels vehicles com els límits de duració de les rutes dels conductors. Per tal de millorar la utilització de les capacitats i temps de treball disponibles, es permet combinar parelles de rutes en punts d'intercanvi predefinits. L'objectiu d'aquesta tesi és analitzar i resoldre el problema d'Enrutament de Vehicles amb Múltiples Dipòsits, on es permet l'intercanvi de vehicles. Amb aquesta estratègia, és possible reduir els costos totals i el nombre de les rutes utilitzades respecte l'enfocament clàssic: el problema d'Enrutament de Vehicles amb Múltiples Dipòsits (MDVRP). Cal assenyalar que el MDRVP és més desafiant i sofisticat que el problema d'Enrutament de Vehicles d'un únic dipòsit (VRP). A més, molts algoritmes exactes per resoldre el VRP clàssic son complicats d'adaptar per resoldre el MDVRP (Montoya-Torres et al., 2015). Des del punt de vista de la complexitat, el MDRVPVI és NP-Dur, perquè és una extensió del problema clàssic, que també ho és. Presentem una cota ajustada de l'estalvi en els costos de distribució que es pot obtenir permetent els intercanvis. Es proposen tres formulacions de programació sencera basades en la formulació clàssica “vehicle-flow” del MDVRP. La primera formulació, degut a la seva grandària i la seva simetria, només permet resoldre instàncies molt petites. Per augmentar la dimensió de les instàncies abordables, es proposen dues formulacions addicionals que requereixen una o vàries famílies de restriccions de mida exponencial. Per això, per tal de resoldre el problema amb aquestes formulacions, ha calgut dissenyar i implementar sengles algorismes de tipus branch-and-cut. En aquests algorismes s'han implementat mètodes de separació específics per a les restriccions que no s'havien utilitzat prèviament en altres problemes de rutes. L’experiència computacional realitzada evidencia els estalvis obtinguts comparació amb les solucions corresponents l'enfocament clàssic. També es compara l’eficàcia dels tres mètodes propostes a l'hora de resoldre el problema

    Horizontale en verticale samenwerking in distributieketens met cross-docks

    Get PDF

    Horizontale en verticale samenwerking in distributieketens met cross-docks

    Get PDF
    corecore