830 research outputs found

    1st INCF Workshop on NeuroImaging Database Integration

    Get PDF
    The goal of this meeting was to map existing neuroimaging databases, particularly databases containing primary data, and to identify mechanisms that could facilitate integrated use of such databases, including possible fusion of databases. The report provides an overview of existing neuroimaging databases that were discussed during the workshop and examines the feasibility of database federations. The report includes several recommendations for future developments

    Prediction of Longitudinal White Matter Change in Healthy Elderly Individuals

    Get PDF
    Diffusion Tensor Imaging (DTI) studies have shown that significant alteration in white matter (WM) integrity differentiates healthy older adults from persons with Mild Cognitive Impairment (MCI) and Alzheimer\u27s disease (AD). Most studies, however, have been cross-sectional and have not related longitudinal DTI changes to cognitive change. Here we report changes in WM integrity and cognition in healthy older adults over an 18-month interval. Sixty-seven cognitively intact elders underwent neuropsychological testing and DTI at baseline to follow-up on the Rey Auditory Verbal Learning Test (recall sum across trials 1-5, delayed recall) and Mattis Dementia Rating Scale-2. Declining participants (N=21) showed a minimum of 1 SD reduction on at least one cognitive measure, while Stable participants (N=46) showed comparable scores at each time point. WM regions-of-interest were derived from Freesurfer. Hierarchical linear regression was used to predict fractional anisotropy (FA) change in regions frequently identified in DTI studies of MCI and AD including transentorhinal cortex, temporal lobe, and posterior cingulate. Groups did not differ at baseline in age, cognition, FA, or WM volume. After controlling for age and baseline FA, cognitive status (Declining, Stable) predicted the baseline to 18-month reduction in FA in the right hippocampal gyrus (p=.004) and left fusi-form gyrus (p=.01) with a trend in the left middle temporal gyrus (p=.06). Future research should examine WM changes in other brain regions and determine whether DTI diffusivity measures are related to cognitive decline

    An approach for identifying brainstem dopaminergic pathways using resting state functional MRI.

    Get PDF
    Here, we present an approach for identifying brainstem dopaminergic pathways using resting state functional MRI. In a group of healthy individuals, we searched for significant functional connectivity between dopamine-rich midbrain areas (substantia nigra; ventral tegmental area) and a striatal region (caudate) that was modulated by both a pharmacological challenge (the administration of the dopaminergic agonist bromocriptine) and a dopamine-sensitive cognitive trait (an individual's working memory capacity). A significant inverted-U shaped connectivity pattern was found in a subset of midbrain-striatal connections, demonstrating that resting state fMRI data is sufficiently powerful to identify brainstem neuromodulatory brain networks

    Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention

    Get PDF
    One quarter of veterans returning from the 1990–1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task (“see a letter, push a button”) performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia–anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction

    Echoes of the spoken past: how auditory cortex hears context during speech perception.

    Get PDF
    What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we 'hear' during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds

    Altered intrinsic functional coupling between core neurocognitive networks in Parkinson\u27s disease

    Get PDF
    Parkinson3s disease (PD) is largely attributed to disruptions in the nigrostriatal dopamine system. These neurodegenerative changes may also have a more global effect on intrinsic brain organization at the cortical level. Functional brain connectivity between neurocognitive systems related to cognitive processing is critical for effective neural communication, and is disrupted across neurological disorders. Three core neurocognitive networks have been established as playing a critical role in the pathophysiology of many neurological disorders: the default-mode network (DMN), the salience network (SN), and the central executive network (CEN). In healthy adults, DMN–CEN interactions are anti-correlated while SN–CEN interactions are strongly positively correlated even at rest, when individuals are not engaging in any task. These intrinsic between-network interactions at rest are necessary for efficient suppression of the DMN and activation of the CEN during a range of cognitive tasks. To identify whether these network interactions are disrupted in individuals with PD, we used resting state functional magnetic resonance imaging (rsfMRI) to compare between-network connectivity between 24 PD participants and 20 age-matched controls (MC). In comparison to the MC, individuals with PD showed significantly less SN–CEN coupling and greater DMN–CEN coupling during rest. Disease severity, an index of striatal dysfunction, was related to reduced functional coupling between the striatum and SN. These results demonstrate that individuals with PD have a dysfunctional pattern of interaction between core neurocognitive networks compared to what is found in healthy individuals, and that interaction between the SN and the striatum is even more profoundly disrupted in those with greater disease severity

    Dance and emotion in posterior parietal cortex: a low-frequency rTMS study

    Get PDF
    Background: The neural bases of emotion are most often studied using short non-natural stimuli and assessed using correlational methods. Here we use a brain perturbation approach to make causal inferences between brain activity and emotional reaction to a long segment of dance. <p>Objective/Hypothesis: We aimed to apply offline rTMS over the brain regions involved in subjective emotional ratings to explore whether this could change the appreciation of a dance performance.</p> <p>Methods: We first used functional magnetic resonance imaging (fMRI) to identify regions correlated with fluctuating emotional rating during a 4-minutes dance performance, looking at both positive and negative correlation. Identified regions were further characterized using meta-data interrogation. Low frequency repetitive TMS was applied over the most important node in a different group of participants prior to them rating the same dance performance as in the fMRI session.</p> <p>Results: FMRI revealed a negative correlation between subjective emotional judgment and activity in the right posterior parietal cortex. This region is commonly involved in cognitive tasks and not in emotional task. Parietal rTMS had no effect on the general affective response, but it significantly (p<0.05 using exact t-statistics) enhanced the rating of the moment eliciting the highest positive judgments.</p> <p>Conclusion: These results establish a direct link between posterior parietal cortex activity and emotional reaction to dance. They can be interpreted in the framework of competition between resources allocated to emotion and resources allocated to cognitive functions. They highlight potential use of brain stimulation in neuro-ĂŚsthetic investigations.</p&gt

    On spatial selectivity and prediction across conditions with fMRI

    Get PDF
    Researchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks.Comment: PRNI 2012 : 2nd International Workshop on Pattern Recognition in NeuroImaging, London : United Kingdom (2012

    Estimating the prevalence of missing experiments in a neuroimaging meta-analysis.

    Get PDF
    Coordinate-based meta-analyses (CBMA) allow researchers to combine the results from multiple functional magnetic resonance imaging experiments with the goal of obtaining results that are more likely to generalize. However, the interpretation of CBMA findings can be impaired by the file drawer problem, a type of publication bias that refers to experiments that are carried out but are not published. Using foci per contrast count data from the BrainMap database, we propose a zero-truncated modeling approach that allows us to estimate the prevalence of nonsignificant experiments. We validate our method with simulations and real coordinate data generated from the Human Connectome Project. Application of our method to the data from BrainMap provides evidence for the existence of a file drawer effect, with the rate of missing experiments estimated as at least 6 per 100 reported. The R code that we used is available at https://osf.io/ayhfv/

    Annotating affective neuroscience data with the Emotion Ontology

    Get PDF
    The Emotion Ontology is an ontology covering all aspects of emotional and affective mental functioning. It is being developed following the principles of the OBO Foundry and Ontological Realism. This means that in compiling the ontology, we emphasize the importance of the nature of the entities in reality that the ontology is describing. One of the ways in which realism-based ontologies are being successfully used within biomedical science is in the annotation of scientific research results in publicly available databases. Such annotation enables several objectives, including searching, browsing and cross-database data integration. A key benefit conferred by realismbased ontology is that suitably annotated research results are able to be aggregated and compared in a fashion that is based on the underlying reality that the science is studying. This has the potential of increasing the power of statistical analysis and meta-analysis in data-driven science. This aspect has been fruitfully exploited in the investigation of the functions of genes in molecular biology. Cognitive neuroscience uses functional neuroimaging to investigate the brain correlates of areas of mental functioning such as memory, planning and emotion. The use of functional neuroimaging to study affective phenomena such as the emotions is called ‘affective neuroscience’. BrainMap is the largest curated database of coordinates and metadata for studies in cognitive neuroscience, including affective neuroscience (Laird et al., 2005). BrainMap data is already classified and indexed using a terminology for classification, called the ‘Cognitive Paradigm Ontology’ (CogPO), that has been developed to facilitate searching and browsing. However, CogPO has been developed specifically for the BrainMap database, and the data are thus far not annotated to a realism-based ontology which would allow the discovery of interrelationships between research results across different databases on the basis of what the research is about. In this contribution, we describe ongoing work that aims to annotate affective neuroscience data, starting with the BrainMap database, using the Emotion Ontology. We describe our objectives and technical approach to the annotation, and mention some of the challenges
    • …
    corecore