1,240 research outputs found

    Nonlinear digital signal processing in mental health: characterization of major depression using instantaneous entropy measures of heartbeat dynamics

    Get PDF
    Nonlinear digital signal processing methods that address system complexity have provided useful computational tools for helping in the diagnosis and treatment of a wide range of pathologies. More specifically, nonlinear measures have been successful in characterizing patients with mental disorders such as Major Depression (MD). In this study, we propose the use of instantaneous measures of entropy, namely the inhomogeneous point-process approximate entropy (ipApEn) and the inhomogeneous point-process sample entropy (ipSampEn), to describe a novel characterization of MD patients undergoing affective elicitation. Because these measures are built within a nonlinear point-process model, they allow for the assessment of complexity in cardiovascular dynamics at each moment in time. Heartbeat dynamics were characterized from 48 healthy controls and 48 patients with MD while emotionally elicited through either neutral or arousing audiovisual stimuli. Experimental results coming from the arousing tasks show that ipApEn measures are able to instantaneously track heartbeat complexity as well as discern between healthy subjects and MD patients. Conversely, standard heart rate variability (HRV) analysis performed in both time and frequency domains did not show any statistical significance. We conclude that measures of entropy based on nonlinear point-process models might contribute to devising useful computational tools for care in mental health

    Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses

    Full text link
    Tesis por compendio[ES] El uso de la realidad virtual (RV) se ha incrementado notablemente en la comunidad científica para la investigación del comportamiento humano. En particular, la RV inmersiva ha crecido debido a la democratización de las gafas de realidad virtual o head mounted displays (HMD), que ofrecen un alto rendimiento con una inversión económica. Uno de los campos que ha emergido con fuerza en la última década es el Affective Computing, que combina psicofisiología, informática, ingeniería biomédica e inteligencia artificial, desarrollando sistemas que puedan reconocer emociones automáticamente. Su progreso es especialmente importante en el campo de la investigación del comportamiento humano, debido al papel fundamental que las emociones juegan en muchos procesos psicológicos como la percepción, la toma de decisiones, la creatividad, la memoria y la interacción social. Muchos estudios se han centrado en intentar obtener una metodología fiable para evocar y automáticamente identificar estados emocionales, usando medidas fisiológicas objetivas y métodos de aprendizaje automático. Sin embargo, la mayoría de los estudios previos utilizan imágenes, audios o vídeos para generar los estados emocionales y, hasta donde llega nuestro conocimiento, ninguno de ellos ha desarrollado un sistema de reconocimiento emocional usando RV inmersiva. Aunque algunos trabajos anteriores sí analizan las respuestas fisiológicas en RV inmersivas, estos no presentan modelos de aprendizaje automático para procesamiento y clasificación automática de bioseñales. Además, un concepto crucial cuando se usa la RV en investigación del comportamiento humano es la validez: la capacidad de evocar respuestas similares en un entorno virtual a las evocadas por el espacio físico. Aunque algunos estudios previos han usado dimensiones psicológicas y cognitivas para comparar respuestas entre entornos reales y virtuales, las investigaciones que analizan respuestas fisiológicas o comportamentales están mucho menos extendidas. Según nuestros conocimientos, este es el primer trabajo que compara entornos físicos con su réplica en RV, empleando respuestas fisiológicas y algoritmos de aprendizaje automático y analizando la capacidad de la RV de transferir y extrapolar las conclusiones obtenidas al entorno real que se está simulando. El objetivo principal de la tesis es validar el uso de la RV inmersiva como una herramienta de estimulación emocional usando respuestas psicofisiológicas y comportamentales en combinación con algoritmos de aprendizaje automático, así como realizar una comparación directa entre un entorno real y virtual. Para ello, se ha desarrollado un protocolo experimental que incluye entornos emocionales 360º, un museo real y una virtualización 3D altamente realista del mismo museo. La tesis presenta novedosas contribuciones del uso de la RV inmersiva en la investigación del comportamiento humano, en particular en lo relativo al estudio de las emociones. Esta ayudará a aplicar metodologías a estímulos más realistas para evaluar entornos y situaciones de la vida diaria, superando las actuales limitaciones de la estimulación emocional que clásicamente ha incluido imágenes, audios o vídeos. Además, en ella se analiza la validez de la RV realizando una comparación directa usando una simulación altamente realista. Creemos que la RV inmersiva va a revolucionar los métodos de estimulación emocional en entornos de laboratorio. Además, su sinergia junto a las medidas fisiológicas y las técnicas de aprendizaje automático, impactarán transversalmente en muchas áreas de investigación como la arquitectura, la salud, la evaluación psicológica, el entrenamiento, la educación, la conducción o el marketing, abriendo un nuevo horizonte de oportunidades para la comunidad científica. La presente tesis espera contribuir a caminar en esa senda.[EN] In recent years the scientific community has significantly increased its use of virtual reality (VR) technologies in human behaviour research. In particular, the use of immersive VR has grown due to the introduction of affordable, high performance head mounted displays (HMDs). Among the fields that has strongly emerged in the last decade is affective computing, which combines psychophysiology, computer science, biomedical engineering and artificial intelligence in the development of systems that can automatically recognize emotions. The progress of affective computing is especially important in human behaviour research due to the central role that emotions play in many background processes, such as perception, decision-making, creativity, memory and social interaction. Several studies have tried to develop a reliable methodology to evoke and automatically identify emotional states using objective physiological measures and machine learning methods. However, the majority of previous studies used images, audio or video to elicit emotional statements; to the best of our knowledge, no previous research has developed an emotion recognition system using immersive VR. Although some previous studies analysed physiological responses in immersive VR, they did not use machine learning techniques for biosignal processing and classification. Moreover, a crucial concept when using VR for human behaviour research is validity: the capacity to evoke a response from the user in a simulated environment similar to the response that might be evoked in a physical environment. Although some previous studies have used psychological and cognitive dimensions to compare responses in real and virtual environments, few have extended this research to analyse physiological or behavioural responses. Moreover, to our knowledge, this is the first study to compare VR scenarios with their real-world equivalents using physiological measures coupled with machine learning algorithms, and to analyse the ability of VR to transfer and extrapolate insights obtained from VR environments to real environments. The main objective of this thesis is, using psycho-physiological and behavioural responses in combination with machine learning methods, and by performing a direct comparison between a real and virtual environment, to validate immersive VR as an emotion elicitation tool. To do so we develop an experimental protocol involving emotional 360º environments, an art exhibition in a real museum, and a highly-realistic 3D virtualization of the same art exhibition. This thesis provides novel contributions to the use of immersive VR in human behaviour research, particularly in relation to emotions. VR can help in the application of methodologies designed to present more realistic stimuli in the assessment of daily-life environments and situations, thus overcoming the current limitations of affective elicitation, which classically uses images, audio and video. Moreover, it analyses the validity of VR by performing a direct comparison using highly-realistic simulation. We believe that immersive VR will revolutionize laboratory-based emotion elicitation methods. Moreover, its synergy with physiological measurement and machine learning techniques will impact transversely in many other research areas, such as architecture, health, assessment, training, education, driving and marketing, and thus open new opportunities for the scientific community. The present dissertation aims to contribute to this progress.[CA] L'ús de la realitat virtual (RV) s'ha incrementat notablement en la comunitat científica per a la recerca del comportament humà. En particular, la RV immersiva ha crescut a causa de la democratització de les ulleres de realitat virtual o head mounted displays (HMD), que ofereixen un alt rendiment amb una reduïda inversió econòmica. Un dels camps que ha emergit amb força en l'última dècada és el Affective Computing, que combina psicofisiologia, informàtica, enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes que puguen reconéixer emocions automàticament. El seu progrés és especialment important en el camp de la recerca del comportament humà, a causa del paper fonamental que les emocions juguen en molts processos psicològics com la percepció, la presa de decisions, la creativitat, la memòria i la interacció social. Molts estudis s'han centrat en intentar obtenir una metodologia fiable per a evocar i automàticament identificar estats emocionals, utilitzant mesures fisiològiques objectives i mètodes d'aprenentatge automàtic. No obstant això, la major part dels estudis previs utilitzen imatges, àudios o vídeos per a generar els estats emocionals i, fins on arriba el nostre coneixement, cap d'ells ha desenvolupat un sistema de reconeixement emocional mitjançant l'ús de la RV immersiva. Encara que alguns treballs anteriors sí que analitzen les respostes fisiològiques en RV immersives, aquests no presenten models d'aprenentatge automàtic per a processament i classificació automàtica de biosenyals. A més, un concepte crucial quan s'utilitza la RV en la recerca del comportament humà és la validesa: la capacitat d'evocar respostes similars en un entorn virtual a les evocades per l'espai físic. Encara que alguns estudis previs han utilitzat dimensions psicològiques i cognitives per a comparar respostes entre entorns reals i virtuals, les recerques que analitzen respostes fisiològiques o comportamentals estan molt menys esteses. Segons els nostres coneixements, aquest és el primer treball que compara entorns físics amb la seua rèplica en RV, emprant respostes fisiològiques i algorismes d'aprenentatge automàtic i analitzant la capacitat de la RV de transferir i extrapolar les conclusions obtingudes a l'entorn real que s'està simulant. L'objectiu principal de la tesi és validar l'ús de la RV immersiva com una eina d'estimulació emocional usant respostes psicofisiològiques i comportamentals en combinació amb algorismes d'aprenentatge automàtic, així com realitzar una comparació directa entre un entorn real i virtual. Per a això, s'ha desenvolupat un protocol experimental que inclou entorns emocionals 360º, un museu real i una virtualització 3D altament realista del mateix museu. La tesi presenta noves contribucions de l'ús de la RV immersiva en la recerca del comportament humà, en particular quant a l'estudi de les emocions. Aquesta ajudarà a aplicar metodologies a estímuls més realistes per a avaluar entorns i situacions de la vida diària, superant les actuals limitacions de l'estimulació emocional que clàssicament ha inclòs imatges, àudios o vídeos. A més, en ella s'analitza la validesa de la RV realitzant una comparació directa usant una simulació altament realista. Creiem que la RV immersiva revolucionarà els mètodes d'estimulació emocional en entorns de laboratori. A més, la seua sinergia al costat de les mesures fisiològiques i les tècniques d'aprenentatge automàtic, impactaran transversalment en moltes àrees de recerca com l'arquitectura, la salut, l'avaluació psicològica, l'entrenament, l'educació, la conducció o el màrqueting, obrint un nou horitzó d'oportunitats per a la comunitat científica. La present tesi espera contribuir a caminar en aquesta senda.Marín Morales, J. (2020). Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/148717TESISCompendi

    Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics

    Get PDF
    Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis

    Recognizing emotions induced by affective sounds through heart rate variability

    Get PDF
    This paper reports on how emotional states elicited by affective sounds can be effectively recognized by means of estimates of Autonomic Nervous System (ANS) dynamics. Specifically, emotional states are modeled as a combination of arousal and valence dimensions according to the well-known circumplex model of affect, whereas the ANS dynamics is estimated through standard and nonlinear analysis of Heart rate variability (HRV) exclusively, which is derived from the electrocardiogram (ECG). In addition, Lagged Poincaré Plots of the HRV series were also taken into account. The affective sounds were gathered from the International Affective Digitized Sound System and grouped into four different levels of arousal (intensity) and two levels of valence (unpleasant and pleasant). A group of 27 healthy volunteers were administered with these standardized stimuli while ECG signals were continuously recorded. Then, those HRV features showing significant changes (p < 0.05 from statistical tests) between the arousal and valence dimensions were used as input of an automatic classification system for the recognition of the four classes of arousal and two classes of valence. Experimental results demonstrated that a quadratic discriminant classifier, tested through Leave-One-Subject-Out procedure, was able to achieve a recognition accuracy of 84.72 percent on the valence dimension, and 84.26 percent on the arousal dimension

    Real vs. immersive-virtual emotional experience: Analysis of psycho-physiological patterns in a free exploration of an art museum

    Full text link
    [EN] Virtual reality is a powerful tool in human behaviour research. However, few studies compare its capacity to evoke the same emotional responses as in real scenarios. This study investigates psycho-physiological patterns evoked during the free exploration of an art museum and the museum virtualized through a 3D immersive virtual environment (IVE). An exploratory study involving 60 participants was performed, recording electroencephalographic and electrocardiographic signals using wearable devices. The real vs. virtual psychological comparison was performed using self-assessment emotional response tests, whereas the physiological comparison was performed through Support Vector Machine algorithms, endowed with an effective feature selection procedure for a set of state-of-the-art metrics quantifying cardiovascular and brain linear and nonlinear dynamics. We included an initial calibration phase, using standardized 2D and 360 degrees emotional stimuli, to increase the accuracy of the model. The self-assessments of the physical and virtual museum support the use of IVEs in emotion research. The 2-class (high/low) system accuracy was 71.52% and 77.08% along the arousal and valence dimension, respectively, in the physical museum, and 75.00% and 71.08% in the virtual museum. The previously presented 360 degrees stimuli contributed to increasing the accuracy in the virtual museum. Also, the real vs. virtual classifier accuracy was 95.27%, using only EEG mean phase coherency features, which demonstrates the high involvement of brain synchronization in emotional virtual reality processes. These findings provide an important contribution at a methodological level and to scientific knowledge, which will effectively guide future emotion elicitation and recognition systems using virtual reality.This work was supported by Ministerio de Economia y Competitividad de Espana (URL: http://www.mineco.gob.es/; Project TIN201345736-R and DPI2016-77396-R); Direccion General de Trafico, Ministerio Del Interior de Espana (URL: http://www.dgt.es/es/; Project SPIP2017-02220); and the Institut Valencia d'Art Modern (URL: https://www.ivam.es/).The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Marín-Morales, J.; Higuera-Trujillo, JL.; Greco, A.; Guixeres, J.; Llinares Millán, MDC.; Gentili, C.; Scilingo, EP.... (2019). Real vs. immersive-virtual emotional experience: Analysis of psycho-physiological patterns in a free exploration of an art museum. PLoS ONE. 14(10):1-24. https://doi.org/10.1371/journal.pone.0223881S1241410Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1-2), 55-64. doi:10.1016/s1071-5819(03)00052-1Jerritta, S., Murugappan, M., Nagarajan, R., & Wan, K. (2011). Physiological signals based human emotion Recognition: a review. 2011 IEEE 7th International Colloquium on Signal Processing and its Applications. doi:10.1109/cspa.2011.5759912Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial Emotion Recognition in Autism Spectrum Disorders: A Review of Behavioral and Neuroimaging Studies. Neuropsychology Review, 20(3), 290-322. doi:10.1007/s11065-010-9138-6Lindal, P. J., & Hartig, T. (2013). Architectural variation, building height, and the restorative quality of urban residential streetscapes. Journal of Environmental Psychology, 33, 26-36. doi:10.1016/j.jenvp.2012.09.003Barrett, L. F. (2017). The theory of constructed emotion: an active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12(11), 1833-1833. doi:10.1093/scan/nsx060Russell, J. A., & Mehrabian, A. (1977). Evidence for a three-factor theory of emotions. Journal of Research in Personality, 11(3), 273-294. doi:10.1016/0092-6566(77)90037-xCalvo, R. A., & D’Mello, S. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing, 1(1), 18-37. doi:10.1109/t-affc.2010.1Valenza, G., Greco, A., Gentili, C., Lanata, A., Sebastiani, L., Menicucci, D., … Scilingo, E. P. (2016). Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2067), 20150176. doi:10.1098/rsta.2015.0176Valenza, G., Lanata, A., & Scilingo, E. P. (2012). The Role of Nonlinear Dynamics in Affective Valence and Arousal Recognition. IEEE Transactions on Affective Computing, 3(2), 237-249. doi:10.1109/t-affc.2011.30Valenza, G., Nardelli, M., Lanata, A., Gentili, C., Bertschy, G., Paradiso, R., & Scilingo, E. P. (2014). Wearable Monitoring for Mood Recognition in Bipolar Disorder Based on History-Dependent Long-Term Heart Rate Variability Analysis. IEEE Journal of Biomedical and Health Informatics, 18(5), 1625-1635. doi:10.1109/jbhi.2013.2290382Marín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., … Valenza, G. (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8(1). doi:10.1038/s41598-018-32063-4Nakisa, B., Rastgoo, M. N., Tjondronegoro, D., & Chandran, V. (2018). Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Systems with Applications, 93, 143-155. doi:10.1016/j.eswa.2017.09.062Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology & Behavior, 7(6), 734-741. doi:10.1089/cpb.2004.7.734Lange, E. (2001). The limits of realism: perceptions of virtual landscapes. Landscape and Urban Planning, 54(1-4), 163-182. doi:10.1016/s0169-2046(01)00134-7Baños, R. M., Liaño, V., Botella, C., Alcañiz, M., Guerrero, B., & Rey B. Changing induced moods via virtual reality. In: Springer, Berlin H, editor. International Conference on Persuasive Technology. 2006. pp. 7–15. doi: 10.1007/11755494_3Peperkorn, H. M., Alpers, G. W., & Mühlberger, A. (2013). Triggers of Fear: Perceptual Cues Versus Conceptual Information in Spider Phobia. Journal of Clinical Psychology, 70(7), 704-714. doi:10.1002/jclp.22057Meehan, M., Razzaque, S., Insko, B., Whitton, M., & Brooks, F. P. (2005). Review of Four Studies on the Use of Physiological Reaction as a Measure of Presence in StressfulVirtual Environments. Applied Psychophysiology and Biofeedback, 30(3), 239-258. doi:10.1007/s10484-005-6381-3Higuera-Trujillo, J. L., López-Tarruella Maldonado, J., & Llinares Millán, C. (2017). Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Applied Ergonomics, 65, 398-409. doi:10.1016/j.apergo.2017.05.006Bian, Y., Yang, C., Gao, F., Li, H., Zhou, S., Li, H., … Meng, X. (2016). A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Personal and Ubiquitous Computing, 20(5), 821-832. doi:10.1007/s00779-016-0953-5Baños, R. M., Etchemendy, E., Castilla, D., García-Palacios, A., Quero, S., & Botella, C. (2012). Positive mood induction procedures for virtual environments designed for elderly people. Interacting with Computers, 24(3), 131-138. doi:10.1016/j.intcom.2012.04.002Riva, G., Mantovani, F., Capideville, C. S., Preziosa, A., Morganti, F., Villani, D., … Alcañiz, M. (2007). Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology & Behavior, 10(1), 45-56. doi:10.1089/cpb.2006.9993Vecchiato, G., Jelic, A., Tieri, G., Maglione, A. G., De Matteis, F., & Babiloni, F. (2015). Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cognitive Processing, 16(S1), 425-429. doi:10.1007/s10339-015-0725-6Slater, M., & Wilbur, S. (1997). A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 6(6), 603-616. doi:10.1162/pres.1997.6.6.603Bishop, I. ., & Rohrmann, B. (2003). Subjective responses to simulated and real environments: a comparison. Landscape and Urban Planning, 65(4), 261-277. doi:10.1016/s0169-2046(03)00070-7Kort, Y. A. W. de, IJsselsteijn, W. A., Kooijman, J., & Schuurmans, Y. (2003). Virtual Laboratories: Comparability of Real and Virtual Environments for Environmental Psychology. Presence: Teleoperators and Virtual Environments, 12(4), 360-373. doi:10.1162/105474603322391604Van der Ham, I. J. M., Faber, A. M. E., Venselaar, M., van Kreveld, M. J., & Löffler, M. (2015). Ecological validity of virtual environments to assess human navigation ability. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00637Eberhard, J. P. (2009). Applying Neuroscience to Architecture. Neuron, 62(6), 753-756. doi:10.1016/j.neuron.2009.06.001Nanda, U., Pati, D., Ghamari, H., & Bajema, R. (2013). Lessons from neuroscience: form follows function, emotions follow form. Intelligent Buildings International, 5(sup1), 61-78. doi:10.1080/17508975.2013.807767Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. doi:10.1037/h0077714Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130-144. doi:10.1162/pres.1994.3.2.130Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal Medicine, 16(9), 606-613. doi:10.1046/j.1525-1497.2001.016009606.xBradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59. doi:10.1016/0005-7916(94)90063-9Cousineau, D., & Chartier, S. (2010). Outliers detection and treatment: a review. International Journal of Psychological Research, 3(1), 58-67. doi:10.21500/20112084.844Tarvainen, M. P., Ranta-aho, P. O., & Karjalainen, P. A. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 49(2), 172-175. doi:10.1109/10.979357Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210-220. doi:10.1016/j.cmpb.2013.07.024Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87. doi:10.1063/1.166141Grassberger, P., & Procaccia, I. (1983). Characterization of Strange Attractors. Physical Review Letters, 50(5), 346-349. doi:10.1103/physrevlett.50.346Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009Colomer Granero, A., Fuentes-Hurtado, F., Naranjo Ornedo, V., Guixeres Provinciale, J., Ausín, J. M., & Alcañiz Raya, M. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00074Kober, S. E., Kurzmann, J., & Neuper, C. (2012). Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. International Journal of Psychophysiology, 83(3), 365-374. doi:10.1016/j.ijpsycho.2011.12.003Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5Mormann, F., Lehnertz, K., David, P., & E. Elger, C. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3-4), 358-369. doi:10.1016/s0167-2789(00)00087-7Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support Vector Algorithms. Neural Computation, 12(5), 1207-1245. doi:10.1162/089976600300015565Yan, K., & Zhang, D. (2015). Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212, 353-363. doi:10.1016/j.snb.2015.02.025Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F., & Riva, G. (2011). The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behavior, and Social Networking, 14(3), 99-105. doi:10.1089/cyber.2010.0100Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature, 410(6825), 277-284. doi:10.1038/35065745Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology, 116(10), 2266-2301. doi:10.1016/j.clinph.2005.06.011Zhao, Q., Zhang, L., & Cichocki, A. (2009). EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chinese Science Bulletin, 54(1), 78-87. doi:10.1007/s11434-008-0547-3Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. CyberPsychology & Behavior, 9(1), 30-45. doi:10.1089/cpb.2006.9.30Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., … Patras, I. (2012). DEAP: A Database for Emotion Analysis ;Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1), 18-31. doi:10.1109/t-affc.2011.15Kim, J., & Andre, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12), 2067-2083. doi:10.1109/tpami.2008.26Yuan-Pin Lin, Chi-Hong Wang, Tzyy-Ping Jung, Tien-Lin Wu, Shyh-Kang Jeng, Jeng-Ren Duann, & Jyh-Horng Chen. (2010). EEG-Based Emotion Recognition in Music Listening. IEEE Transactions on Biomedical Engineering, 57(7), 1798-1806. doi:10.1109/tbme.2010.2048568Combrisson, E., & Jerbi, K. (2015). Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Journal of Neuroscience Methods, 250, 126-136. doi:10.1016/j.jneumeth.2015.01.010De Borst, A. W., & de Gelder, B. (2015). Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00576Mitchell, R. L. C., & Phillips, L. H. (2015). The overlapping relationship between emotion perception and theory of mind. Neuropsychologia, 70, 1-10. doi:10.1016/j.neuropsychologia.2015.02.018Powers, M. B., & Emmelkamp, P. M. G. (2008). Virtual reality exposure therapy for anxiety disorders: A meta-analysis. Journal of Anxiety Disorders, 22(3), 561-569. doi:10.1016/j.janxdis.2007.04.006Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. International Journal of Psychophysiology, 73(2), 88-94. doi:10.1016/j.ijpsycho.2009.01.012Niedenthal, P. M. (2007). Embodying Emotion. Science, 316(5827), 1002-1005. doi:10.1126/science.1136930Leer, A., Engelhard, I. M., & van den Hout, M. A. (2014). How eye movements in EMDR work: Changes in memory vividness and emotionality. Journal of Behavior Therapy and Experimental Psychiatry, 45(3), 396-401. doi:10.1016/j.jbtep.2014.04.004Gentili, C. (2017). Why do we keep failing in identifying reliable biological markers in depression? Journal of Evidence-Based Psychotherapies, 17(2), 59-84. doi:10.24193/jebp.2017.2.4Debener, S., Minow, F., Emkes, R., Gandras, K., & de Vos, M. (2012). How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology, 49(11), 1617-1621. doi:10.1111/j.1469-8986.2012.01471.

    Assessing the quality of heart rate variability estimated from wrist and finger PPG: A novel approach based on cross-mapping method

    Get PDF
    The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics
    corecore