3,556 research outputs found

    Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    Get PDF
    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients

    Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Get PDF
    Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Seven Capital Devices for the Future of Stroke Rehabilitation

    Get PDF

    A functional electrical stimulation system for human walking inspired by reflexive control principles

    Get PDF
    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation–assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking

    After Stroke Movement Impairments: A Review of Current Technologies for Rehabilitation

    Get PDF
    This chapter presents a review of the rehabilitation technologies for people who have suffered a stroke, comparing and analyzing the impact that these technologies have on their recovery in the short and long term. The problematic is presented, and motor impairments for upper and lower limbs are characterized. The goal of this chapter is to show novel trends and research for the assistance and treatment of motor impairment caused by strokes

    Implanted Peroneal Nerve Stimulator Treatment for Drop Foot Caused by Central Nervous System Lesion:A Twelve-Month Follow-up of 21 Patients

    Get PDF
    OBJECTIVE: Drop foot is a common impairment following stroke or other causes of central pathology. We report data on patient self-perceived performance, satisfaction with performance, walking ability, and adverse effects after surgical implantation of the ActiGait(®) drop foot stimulator. DESIGN: Prospective case study with a 12-month follow-up. SUBJECTS: Twenty-one participants with drop foot caused by central nervous system lesion. METHODS: The patients’ self-perceived performance and satisfaction with performance were evaluated using the Canadian Occupational Performance Measure (COPM). Walking ability was assessed using a 10-m walk test and a 6-min walk. Nerve conduction of the peroneal nerve was examined in 10 patients. RESULTS: At follow-up, COPM self-percieved performance from 3.2 to 6.7 points, the median increase being 2.8 (interquartile range (IQR) 2.2–5.0), p < 0.001. Likewise, the COPM satisfaction with performance increased from 2.6 to 6.9 points, the median increase being 4.2 (IQR 2.8–5.8), p < 0.001. Walking velocity increased 0.1 m/s from a baseline measurement of 0.73 m/s (95% confidence interval (95% CI) 0.03–0.2), n = 21, p < 0.01, and walking distance increased by 33 m, from a baseline measurement of 236 m (95% CI 15–51), n = 21, p < 0.001. CONCLUSION: Stimulation of the peroneal nerve by an implantable stimulator increases self-perceived performance, satisfaction with performance, and ambulation in patients with long-lasting drop foot caused by a central nervous system lesion
    corecore