42,167 research outputs found

    The Complementary Brain: From Brain Dynamics To Conscious Experiences

    Full text link
    How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657

    A half century of progress towards a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders

    Full text link
    Invited article for the book Artificial Intelligence in the Age of Neural Networks and Brain Computing R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, Eds. Cambridge, MA: Academic PressThis article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. The article describes a theoretical method that has enabled such a theory to be developed in stages by carrying out a kind of conceptual evolution. It also describes revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART proposes how advanced brains learn to attend, recognize, and predict objects and events in a changing world that is filled with unexpected events. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. The article mentions why a theory of this kind may be useful in the design of autonomous adaptive agents in engineering and technology. It also notes how the theory has led to new mechanistic insights about mental disorders such as autism, medial temporal amnesia, Alzheimer’s disease, and schizophrenia, along with mechanistically informed proposals about how their symptoms may be ameliorated

    The Complementary Brain: A Unifying View of Brain Specialization and Modularity

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-I-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-I-0657

    From Stereogram to Surface: How the Brain Sees the World in Depth

    Full text link
    When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (EIA-01-30851, SBE-0354378); Office of Naval Research (N00014-01-1-0624

    A Neural Theory of Attentive Visual Search: Interactions of Boundary, Surface, Spatial, and Object Representations

    Full text link
    Visual search data are given a unified quantitative explanation by a model of how spatial maps in the parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional resources as they reciprocally interact with visual representations in the prestriate cortex. The model visual representations arc organized into multiple boundary and surface representations. Visual search in the model is initiated by organizing multiple items that lie within a given boundary or surface representation into a candidate search grouping. These items arc compared with object recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches and recursive selection of new groupings until a target object io identified. This search model is algorithmically specified to quantitatively simulate search data using a single set of parameters, as well as to qualitatively explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Viri, and Garbart (1984), Cohen and Ivry (1991), Enno and Rensink (1990), He and Nakayarna (1992), Humphreys, Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the Feature Integration and Guided Search models, and grounds the analysis of visual search in neural models of preattentive vision, attentive object learning and categorization, and attentive spatial localization and orientation.Air Force Office of Scientific Research (F49620-92-J-0499, 90-0175, F49620-92-J-0334); Advanced Research Projects Agency (AFOSR 90-0083, ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100); Northeast Consortium for Engineering Education (NCEE/A303/21-93 Task 0021); British Petroleum (89-A-1204); National Science Foundation (NSF IRI-90-00530

    Subjective Experiences of Space and Time: Self, Sensation, and Phenomenal Time

    Get PDF
    The investigation of subjective experiences (SEs) of space and time is at the core of consciousness research. The term ‘space’ includes the subject and objects. The SE of subject, I-ness, is defined as ‘Self’. The SEs of objects, subject’s external body, and subject’s internal states such as feelings, thoughts, and so on can be investigated using the proto-experience (PE)-SE framework. The SE of time is defined as ‘phenomenal time’ (which includes past, present and future) and the SE of space as ‘phenomenal space’. The three non-experiential materialistic models are as follows: (I) The quantum-dissipation model [25] can connect the discrete neural signals to classical electromagnetic field to ‘quantum field theory and chaos theory’ for explaining memory. (II) The soliton-catalytic model [8] hypothesizes that all living processes including micro- and macro-processes can be explained by catalysis process. (III) The ‘sensation from evolution of action’ model [13] proposes that SEs are internalized during evolution. All these models can address to some extent the function of structures, such as perception. They cannot address explanatory gap. The complementary experiential PE-SE framework [37] addresses this psycho-physical gap and elucidates the SEs of space and time

    Multiscale sampling model for motion integration

    Full text link
    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.This work was supported in part by CELEST, a National Science Foundation Science of Learning Center; NSF SBE-0354378 and OMA-0835976; ONR (N00014-11-1-0535); and AFOSR (FA9550-12-1-0436). (CELEST, a National Science Foundation Science of Learning Center; SBE-0354378 - NSF; OMA-0835976 - NSF; N00014-11-1-0535 - ONR; FA9550-12-1-0436 - AFOSR)Published versio

    Filling-in the Forms: Surface and Boundary Interactions in Visual Cortex

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-l-0409); Office of Naval Research (NOOO14-95-1-0657)

    Detecting emergent processes in cellular automata with excess information

    Full text link
    Many natural processes occur over characteristic spatial and temporal scales. This paper presents tools for (i) flexibly and scalably coarse-graining cellular automata and (ii) identifying which coarse-grainings express an automaton's dynamics well, and which express its dynamics badly. We apply the tools to investigate a range of examples in Conway's Game of Life and Hopfield networks and demonstrate that they capture some basic intuitions about emergent processes. Finally, we formalize the notion that a process is emergent if it is better expressed at a coarser granularity.Comment: 8 pages, 6 figure
    • …
    corecore