38 research outputs found

    Advanced computational intelligence strategies for mental task classification using electroencephalography signals

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Brain-computer interface (BCI) has been known as a cutting-edge technology in the current research. It is able to measure the brain activity directly instead of using the natural peripheral nerves and muscles and translates the user’s intent brain activity into useful control signals. There is still a need for a technology for severely disabled individuals who suffer from locked-in syndromes, such as amyotrophic lateral sclerosis (ALS), cervical spinal cord injury (SCI) or tetraplegia and brain stem stroke. A brain-computer interface (BCI) could be used here as an alternative solution for control and communication. The main aim of this research is to develop a BCI system to assist mobility as hand-free technology for people with severe disability, with improved accuracy, which provides effective classification accuracy for wheelchair control. Electroencephalography (EEG) is the chosen BCI technology because it is non-invasive, portable and inexpensive. Currently, BCI using EEG can be divided into two strategies; selective attention and spontaneous mental signal. For the selective attention strategy, BCI relies on external stimuli which might be uncomfortable for severely disabled individuals who need to focus on external stimuli and the environment simultaneously. This is not the case for BCIs which rely on spontaneous mental signals initiated by the users themselves. BCI that uses sensorimotor rhythm (SMR) is one of the examples of the spontaneous mental strategy. There have been many reports in research using SMR-based BCI; however, there are still some people who are unable to use this. As a result, in this thesis, mental task-based EEG is used as an alternative. This thesis presents the embedded EEG system for mental task classification. A prototype wireless embedded EEG system for mental task BCI classification is developed. The prototype includes a wireless EEG as head gear and an embedded system with a wireless receiver. The developed wireless EEG provides a good common mode rejection ratio (CMRR) performance and a compact size with a low current consumption coin cell battery for power. Mental tasks data are collected using the prototype system from six healthy participants which include arithmetic, figure rotation, letter composing and counting task with additional eyes closed task. The developed prototype BCI system is able to detect the dominant alpha wave between 8-13Hz during eyes closed. Using the FFT as the features extractor and artificial neural network (ANN) as the classifier, the developed prototype EEG system provides high accuracy for the eyes closed and eyes open tasks. The classification of the three mental task combinations achieve an overall accuracy of around 70%. Also, an optimized BCI system for mental task classification using the Hilbert-Huang transform (HHT) feature extractor and the genetic algorithm optimization of the artificial neural network (GA-ANN) classifier is presented. Non motor imagery mental tasks are employed, including: arithmetic, letter composing, Rubik’s cube rolling, visual counting, ringtone, spatial navigation and eyes closed task. When more mental tasks are used, users are able to choose the most effective of tasks suitable for their circumstance. The result of classification for the three user chosen mental tasks achieves accuracy between 76% and 85% using eight EEG channels with GA-ANN (classifier) and FFT (feature extractor). In a two EEG channels classification using FFT as the features extractor, the accuracy is reduced between 65% and 79%. However, the HHT features extractor provides improved accuracy between 70% and 84%. Further, an advanced BCI system using the ANN with fuzzy particle swarm optimization using cross-mutated operation (FPSOCM-ANN) for mental task classification is presented. This experiment involves five able-bodied subjects and also five patients with tetraplegia as the target group of the BCI system. The three relevant mental tasks used for the BCI concentrates on mental letter composing, mental arithmetic and mental Rubik’s cube rolling forward. Although the patients group has lower classification accuracy, this is improved by increasing the time-window of data with the best at 7s. The results classification for 7s time-window show the best classifier is using the FPSOCM-ANN (84.4% using FPSOCM-ANN, 77.4% using GA-ANN, 77.0% using SVM, 72.1% using LDA, and 71.0% using linear perceptron). For practical use of a BCI, the two channels EEG is also presented using this advanced BCI classification method (FPSOCM-ANN). For overall, O1 and C4 are the best two channels at 80.5% of accuracy, followed by the second best at P3 and O2 at 76.4% of accuracy, and the third best at C3 and O2 channels at 75.4% of accuracy

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION

    Get PDF
    Brain-computer Interface (BCI) merupakan sistem yang mentransformasikan aktivitas listrik otak terhadap kegiatan mental ke dalam pengontrolan sinyal. Electroencephalogram (EEG) merupakan salah satu sinyal yang diperoleh dari aktivitas listrik untuk melakukan klasifikasi terhadap akifitas mental. Neural Network banyak digunakan untuk proses klasifikasi, namun proses pelatihan dengan algoritma back-propagation (BP) yang menggunakan metode gradient steepest descent solusinya banyak terjebak kedalam minimum lokal. Tujuan penelitian untuk melakukan optimalisasi dalam proses penentuan pembobotan dari metode neural network dalam mengklasifikasikan aktivitas mental sinyal EEG. Particle Swarm Optimization digunakan untuk mengoptimalisasi bobot dari NN dengan Evolutionary Direction Operator dan Migration serta menggunakan Fuzzy Inference System untuk menentukan bobot inersia adaptif serta Cross-Mutated Operation merupakan strategi baru yang diusulkan.Metode ini menyediakan peningkatan akurasi untuk tiga pekerjaan aktivitas mental dimana rata-rata akurasi untuk subjek pertama adalah 54,20%, subjek dua 58,40% dan 54,48% untuk subjek tiga. Akurasi terbaik dari seluruh percobaan pada subjek pertama adalah 69,18%, subjek dua 67,20% dan 57,67% untuk subjek tiga. Dengan demikian metode yang diusulkan masih lebih baik dari metode sebelumnya

    A Comprehensive Analysis on EEG Signal Classification Using Advanced Computational Analysis

    Get PDF
    Electroencephalogram (EEG) has been used in a wide array of applications to study mental disorders. Due to its non-invasive and low-cost features, EEG has become a viable instrument in Brain-Computer Interfaces (BCI). These BCI systems integrate user\u27s neural features with robotic machines to perform tasks. However, due to EEG signals being highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise interference. An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement as recorded brain signals can be unreliable and vary in pattern throughout time. In the initial work, a novel classifier structure is proposed to classify different types of imaginary motions (left hand, right hand, and imagination of words starting with the same letter) across multiple sessions using an optimized set of electrodes for each user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and classifies the imaginary motions using Artificial Neural Networks (ANN). To enhance the classification rate and optimize the set of electrodes of each subject, a majority voting system combining a set of simple ANNs is used. This electrode optimization technique achieved classification accuracies of 69.83%, 94.04% and 84.56% respectively for the three subjects considered in this work. In the second work, the signal variations are studied in detail for a large EEG dataset. Using the Independent Component Analysis (ICA) with a dynamic threshold model, noise features were filtered. The data was classified to a high precision of more than 94% using artificial neural networks. A decreased variance in classification validated both, the effectiveness of the proposed dynamic threshold systems and the presence of higher concentrations of noise in data for specific subjects. Using this variance and classification accuracy, subjects were separated into two groups. The lower accuracy group was found to have an increased variance in classification. To confirm these results, a Kaiser windowing technique was used to compute the signal-to-noise ratio (SNR) for all subjects and a low SNR was obtained for all EEG signals pertaining to the group with the poor data classification. This work not only establishes a direct relationship between high signal variance, low SNR, and poor signal classification but also presents classification results that are significantly higher than the accuracies reported by prior studies for the same EEG user dataset

    Inherent Fuzzy Entropy for the Improvement of EEG Complexity Evaluation

    Full text link
    © 2017 IEEE. In recent years, the concept of entropy has been widely used to measure the dynamic complexity of signals. Since the state of complexity of human beings is significantly affected by their health state, developing accurate complexity evaluation algorithms is a crucial and urgent area of study. This paper proposes using inherent fuzzy entropy (Inherent FuzzyEn) and its multiscale version, which employs empirical mode decomposition and fuzzy membership function (exponential function) to address the dynamic complexity in electroencephalogram (EEG) data. In the literature, the reliability of entropy-based complexity evaluations has been limited by superimposed trends in signals and a lack of multiple time scales. Our proposed method represents the first attempt to use the Inherent FuzzyEn algorithm to increase the reliability of complexity evaluation in realistic EEG applications. We recorded the EEG signals of several subjects under resting condition, and the EEG complexity was evaluated using approximate entropy, sample entropy, FuzzyEn, and Inherent FuzzyEn, respectively. The results indicate that Inherent FuzzyEn is superior to other competing models regardless of the use of fuzzy or nonfuzzy structures, and has the most stable complexity and smallest root mean square deviation

    An improved data classification framework based on fractional particle swarm optimization

    Get PDF
    Particle Swarm Optimization (PSO) is a population based stochastic optimization technique which consist of particles that move collectively in iterations to search for the most optimum solutions. However, conventional PSO is prone to lack of convergence and even stagnation in complex high dimensional-search problems with multiple local optima. Therefore, this research proposed an improved Mutually-Optimized Fractional PSO (MOFPSO) algorithm based on fractional derivatives and small step lengths to ensure convergence to global optima by supplying a fine balance between exploration and exploitation. The proposed algorithm is tested and verified for optimization performance comparison on ten benchmark functions against six existing established algorithms in terms of Mean of Error and Standard Deviation values. The proposed MOFPSO algorithm demonstrated lowest Mean of Error values during the optimization on all benchmark functions through all 30 runs (Ackley = 0.2, Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01, Rastrigin = 2.5E-03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-03, Step = 0). Furthermore, the proposed MOFPSO algorithm is hybridized with Back-Propagation (BP), Elman Recurrent Neural Networks (RNN) and Levenberg-Marquardt (LM) Artificial Neural Networks (ANNs) to propose an enhanced data classification framework, especially for data classification applications. The proposed classification framework is then evaluated for classification accuracy, computational time and Mean Squared Error on five benchmark datasets against seven existing techniques. It can be concluded from the simulation results that the proposed MOFPSO-ERNN classification algorithm demonstrated good classification performance in terms of classification accuracy (Breast Cancer = 99.01%, EEG = 99.99%, PIMA Indian Diabetes = 99.37%, Iris = 99.6%, Thyroid = 99.88%) as compared to the existing hybrid classification techniques. Hence, the proposed technique can be employed to improve the overall classification accuracy and reduce the computational time in data classification applications
    corecore