383,935 research outputs found

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    Interactive Reading Using Low Cost Brain Computer Interfaces

    Get PDF
    This work shows the feasibility for document reader user applications using a consumer grade non-invasive BCI headset. Although Brain Computer Interface (BCI) type devices are beginning to aim at the consumer level, the level at which they can actually detect brain activity is limited. There is however progress achieved in allowing for interaction between a human and a computer when this interaction is limited to around 2 actions. We employed the Emotiv Epoc, a low-priced BCI headset, to design and build a proof-of-concept document reader system that allows users to navigate the document using this low cast BCI device. Our prototype has been implemented and evaluated with 12 participants who were trained to navigate documents using signals acquired by Emotive Epoc

    Brain-Computer Interfaces and Human-Computer Interaction

    Get PDF

    Freeze the BCI until the user is ready: a pilot study of a BCI inhibitor

    Get PDF
    In this paper we introduce the concept of Brain-Computer Interface (BCI) inhibitor, which is meant to standby the BCI until the user is ready, in order to improve the overall performance and usability of the system. BCI inhibitor can be defined as a system that monitors user's state and inhibits BCI interaction until specific requirements (e.g. brain activity pattern, user attention level) are met. In this pilot study, a hybrid BCI is designed and composed of a classic synchronous BCI system based on motor imagery and a BCI inhibitor. The BCI inhibitor initiates the control period of the BCI when requirements in terms of brain activity are reached (i.e. stability in the beta band). Preliminary results with four participants suggest that BCI inhibitor system can improve BCI performance.Comment: 5th International Brain-Computer Interface Workshop (2011

    Multi-command Tactile Brain Computer Interface: A Feasibility Study

    Full text link
    The study presented explores the extent to which tactile stimuli delivered to the ten digits of a BCI-naive subject can serve as a platform for a brain computer interface (BCI) that could be used in an interactive application such as robotic vehicle operation. The ten fingertips are used to evoke somatosensory brain responses, thus defining a tactile brain computer interface (tBCI). Experimental results on subjects performing online (real-time) tBCI, using stimuli with a moderately fast inter-stimulus-interval (ISI), provide a validation of the tBCI prototype, while the feasibility of the concept is illuminated through information-transfer rates obtained through the case study.Comment: Haptic and Audio Interaction Design 2013, Daejeon, Korea, April 18-19, 2013, 15 pages, 4 figures, The final publication will be available at link.springer.co

    A Wireless Future: performance art, interaction and the brain-computer interfaces

    Get PDF
    Although the use of Brain-Computer Interfaces (BCIs) in the arts originates in the 1960s, there is a limited number of known applications in the context of real-time audio-visual and mixed-media performances and accordingly the knowledge base of this area has not been developed sufficiently. Among the reasons are the difficulties and the unknown parameters involved in the design and implementation of the BCIs. However today, with the dissemination of the new wireless devices, the field is rapidly growing and changing. In this frame, we examine a selection of representative works and artists, in comparison to the current scientific evidence. We identify important performative and neuroscientific aspects, issues and challenges. A model of possible interactions between the performers and the audience is discussed and future trends regarding liveness and interconnectivity are suggested
    corecore