1,646 research outputs found

    Network perspectives on epilepsy using EEG/MEG source connectivity

    Get PDF
    The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience

    A Lightweight Deep Learning Model for The Early Detection of Epilepsy

    Get PDF
    Epilepsy is a neurological disorder and non communicable disease which affects patient's health, During this seizure occurrence normal brain function activity will be interrupted. It may happen anywhere and anytime so it leads to very dangerous problems like sudden unexpected death. Worldwide seizure affected people are around 65% million. So it must be considered as serious problem for the early prediction.  A number of different types of screening tests will be conducted to assess the severity of the symptoms such as EEG,MRI, ECG, and ECG. There are several reasons why EEG signals are used, including their affordability, portability, and ability to display. The proposed model used bench-marked CHB-MIT EEG datasets for the implementation of early prediction of epilepsy ensures its seriousness and leads to perfect diagnosis. Researchers proposed Various ML /DL methods to  try for the early prediction of epilepsy but still it has some challenges in terms of efficiency and precision Seizure detection techniques typically employ the use of convolutional neural networks (CNN) and a bidirectional short- and long-term memory (Bi-LSTM) model in the realm of deep learning. This method leverages the strengths of both models to effectively analyze electroencephalogram (EEG) data and detect seizure patterns. These light weight models have been found to be effective in automatically detecting seizures in deep learning techniques with an accuracy rate of up to 96.87%. Hence, this system has the potential to be utilized for categorizing other types of physiological signals too, but additional research is required to confirm this

    Random neural network based epileptic seizure episode detection exploiting electroencephalogram signals

    Get PDF
    Epileptic seizures are caused by abnormal electrical activity in the brain that manifests itself in a variety of ways, including confusion and loss of awareness. Correct identification of epileptic seizures is critical in the treatment and management of patients with epileptic disorders. One in four patients present resistance against seizures episodes and are in dire need of detecting these critical events through continuous treatment in order to manage the specific disease. Epileptic seizures can be identified by reliably and accurately monitoring the patients’ neuro and muscle activities, cardiac activity, and oxygen saturation level using state-of-the-art sensing techniques including electroencephalograms (EEGs), electromyography (EMG), electrocardiograms (ECGs), and motion or audio/video recording that focuses on the human head and body. EEG analysis provides a prominent solution to distinguish between the signals associated with epileptic episodes and normal signals; therefore, this work aims to leverage on the latest EEG dataset using cutting-edge deep learning algorithms such as random neural network (RNN), convolutional neural network (CNN), extremely random tree (ERT), and residual neural network (ResNet) to classify multiple variants of epileptic seizures from non-seizures. The results obtained highlighted that RNN outperformed all other algorithms used and provided an overall accuracy of 97%, which was slightly improved after cross validation

    The Electrophysiology of Resting State fMRI Networks

    Get PDF
    Traditional research in neuroscience has studied the topography of specific brain functions largely by presenting stimuli or imposing tasks and measuring evoked brain activity. This paradigm has dominated neuroscience for 50 years. Recently, investigations of brain activity in the resting state, most frequently using functional magnetic resonance imaging (fMRI), have revealed spontaneous correlations within widely distributed brain regions known as resting state networks (RSNs). Variability in RSNs across individuals has found to systematically relate to numerous diseases as well as differences in cognitive performance within specific domains. However, the relationship between spontaneous fMRI activity and the underlying neurophysiology is not well understood. This thesis aims to combine invasive electrophysiology and resting state fMRI in human subjects to better understand the nature of spontaneous brain activity. First, we establish an approach to precisely coregister intra-cranial electrodes to fMRI data (Chapter 2). We then created a novel machine learning approach to define resting state networks in individual subjects (Chapter 3). This approach is validated with cortical stimulation in clinical electrocorticography (ECoG) patients (Chapter 4). Spontaneous ECoG data are then analyzed with respect to fMRI time-series and fMRI-defined RSNs in order to illustrate novel ECoG correlates of fMRI for both local field potentials and band-limited power (BLP) envelopes (Chapter 5). In Chapter 6, we show that the spectral specificity of these resting state ECoG correlates link classic brain rhythms with large-scale functional domains. Finally, in Chapter 7 we show that the frequencies and topographies of spontaneous ECoG correlations specifically recapitulate the spectral and spatial structure of task responses within individual subjects

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    Solving an Optimal Control Problem of Cancer Treatment by Artificial Neural Networks

    Get PDF
    Cancer is an uncontrollable growth of abnormal cells in any tissue of the body. Many researchers have focused on machine learning and artificial intelligence (AI) based on approaches for cancer treatment. Dissimilar to traditional methods, these approaches are efficient and are able to find the optimal solutions of cancer chemotherapy problems. In this paper, a system of ordinary differential equations (ODEs) with the state variables of immune cells, tumor cells, healthy cells and drug concentration is proposed to anticipate the tumor growth and to show their interactions in the body. Then, an artificial neural network (ANN) is applied to solve the ODEs system through minimizing the error function and modifying the parameters consisting of weights and biases. The mean square errors (MSEs) between the analytical and ANN results corresponding to four state variables are 1.54e-06, 6.43e-07, 6.61e-06, and 3.99e-07, respectively. These results show the good performance and efficiency of the proposed method. Moreover, the optimal dose of chemotherapy drug and the amount of drug needed to continue the treatment process are achieved
    • …
    corecore