130 research outputs found

    Mesoscopic Physics of Quantum Systems and Neural Networks

    Get PDF
    We study three different kinds of mesoscopic systems – in the intermediate region between macroscopic and microscopic scales consisting of many interacting constituents: We consider particle entanglement in one-dimensional chains of interacting fermions. By employing a field theoretical bosonization calculation, we obtain the one-particle entanglement entropy in the ground state and its time evolution after an interaction quantum quench which causes relaxation towards non-equilibrium steady states. By pushing the boundaries of the numerical exact diagonalization and density matrix renormalization group computations, we are able to accurately scale to the thermodynamic limit where we make contact to the analytic field theory model. This allows to fix an interaction cutoff required in the continuum bosonization calculation to account for the short range interaction of the lattice model, such that the bosonization result provides accurate predictions for the one-body reduced density matrix in the Luttinger liquid phase. Establishing a better understanding of how to control entanglement in mesoscopic systems is also crucial for building qubits for a quantum computer. We further study a popular scalable qubit architecture that is based on Majorana zero modes in topological superconductors. The two major challenges with realizing Majorana qubits currently lie in trivial pseudo-Majorana states that mimic signatures of the topological bound states and in strong disorder in the proposed topological hybrid systems that destroys the topological phase. We study coherent transport through interferometers with a Majorana wire embedded into one arm. By combining analytical and numerical considerations, we explain the occurrence of an amplitude maximum as a function of the Zeeman field at the onset of the topological phase – a signature unique to MZMs – which has recently been measured experimentally [Whiticar et al., Nature Communications, 11(1):3212, 2020]. By placing an array of gates in proximity to the nanowire, we made a fruitful connection to the field of Machine Learning by using the CMA-ES algorithm to tune the gate voltages in order to maximize the amplitude of coherent transmission. We find that the algorithm is capable of learning disorder profiles and even to restore Majorana modes that were fully destroyed by strong disorder by optimizing a feasible number of gates. Deep neural networks are another popular machine learning approach which not only has many direct applications to physical systems but which also behaves similarly to physical mesoscopic systems. In order to comprehend the effects of the complex dynamics from the training, we employ Random Matrix Theory (RMT) as a zero-information hypothesis: before training, the weights are randomly initialized and therefore are perfectly described by RMT. After training, we attribute deviations from these predictions to learned information in the weight matrices. Conducting a careful numerical analysis, we verify that the spectra of weight matrices consists of a random bulk and a few important large singular values and corresponding vectors that carry almost all learned information. By further adding label noise to the training data, we find that more singular values in intermediate parts of the spectrum contribute by fitting the randomly labeled images. Based on these observations, we propose a noise filtering algorithm that both removes the singular values storing the noise and reverts the level repulsion of the large singular values due to the random bulk

    Exercise and Proximal Femur Bone Strength to Reduce Fall-Induced Hip Fracture

    Get PDF
    Bone mass and structure, constituting its strength, adapt to prevalent mechanical environment. Physical activity and exercise provide natural ways to apply the mechanical loading to bone. Finding effective osteogenic exercise types to improve proximal femur bone strength is of great importance to reduce hip fracture incidence and consequent substantial socioeconomic burden. Importantly, almost all hip fractures are caused by falls. Therefore, the primary objective of the present doctoral research was to find such effective exercise types by exploring the effect of long-term specific exercise loading on proximal femur bone strength in the fall situation using a finite element (FE) method. The secondary objective was to analyze 3D morphological adaptation of proximal femur cortical bone to the specific exercise loading. The results from this secondary objective were anticipated to help understanding the findings pertinent to the primary objective. To achieve these objectives, proximal femur MRI data were obtained from 91 young adult female athletes (aged 24.7 ± 6.1 years, > 8 years competing career) and 20 nonathletic but physically active controls (aged 23.7 ± 3.8 years). The athletes were classified into five distinct exercise loading groups based on the typical loading patterns of their sports: high-impact (H-I: triple- and high-jumpers), odd-impact (O-I: soccer/football and squash players), high-magnitude (H-M: powerlifters), repetitive-impact (R-I: endurance runners), and repetitive non-impact (R-NI: swimmers). Based on their MRI data, proximal femur FE models were first created in a single fall configuration (direction) to compare 1) cortical stresses in eight anatomical octants of femoral neck cross-sections in the proximal, middle, and distal femoral neck regions and 2) fracture behavior (load, location, and mode) between each exercise loading and control groups. The athletic bones are adapted to the long- term specific exercise loading characterized by not only the loading magnitude, rate, and frequency but also direction. Given this, the study was extended to simulate the FE models in multiple fall directions to examine whether potentially identified higher proximal femur bone strength to reduce fall-induced hip fracture risk, attributed to the long-term specific exercise loading, depends on the direction of the fall onto the greater trochanter or hip. For the secondary objective, a new computational anatomy method called Ricci-flow conformal mapping (RCM) was implemented to obtain 3D distribution of the cortical thickness within the proximal femur and to perform its spatial between-group statistical comparisons. Key results from the present research demonstrated that young adult females with the exercise loading history of high ground impacts (H-I), ground impacts from unusual/odd directions (O-I), or a great number of repetitive ground impacts (R-I) had 10-22%, 12-16%, and 14-23% lower fall-induced cortical stress at the fracture-prone superolateral femoral neck and 11-17%, 10-11%, and 22-28% higher fracture loads (higher proximal femur bone strength) in the fall situations compared to the controls, respectively. These results indicate that the long-term H-I, O-I, and R-I exercise loadings may reduce the fall-induced hip fracture risk. Furthermore, the present results showed that the higher proximal femur bone strength to reduce hip fracture risk in athletes engaged in the high-impact or repetitive-impact sports are robust and independent of the direction of fall. In contrast, the higher strength attributed to the odd-impact exercise loading appears more modest and specific to the fall direction. The analysis of the minimum fall strength spanning the multiple fall directions also supported the higher proximal femur bone strength in the athletes engaged in these impact exercises. In concordance with the literature, the present results also confirmed in these young adult females that 1) the fall-induced hip fracture most likely initiates from the superolateral femoral neck’s cortical bone, particularly at its posterior aspect (superoposterior cortex) in the distal femoral neck region, and 2) the most dangerous fracture-causing fall direction is the one where the impact is imposed to the posterolateral aspect of the greater trochanter. It would be ideal if impact exercise loading could induce beneficial cortical bone adaptation in the fracture-prone posterior aspect of superolateral femoral neck cortex. However, such apparently beneficial cortical adaptation was not observed in any of the impact or nonimpact exercise loading types examined in the present research based on the supplementary RCM-based 3D morphological analyses of proximal femur cortical bone. This analysis importantly showed that the higher proximal femur bone strengths to reduce fall-induced hip fracture risk in athletes engaged in the high- or odd-impact exercise types are likely due to thicker cortical layers in other femoral neck regions including the inferior, posterior, and/or superior-to-superoanterior regions. Interestingly, the higher proximal femur strength in the athletes with the repetitive-impact exercise loading was not supported by such cortical adaptation. This suggests that other structural/geometrical adaptation contributes to their higher strength. This calls for further studies to elucidate the source of the higher proximal femur bone strength in this type of athletes. In contrast to the impact exercise loading histories, the exercise loading history of the high-magnitude (e.g., powerlifting) or repetitive, non-impact (e.g., swimming) was not associated with higher proximal femur bone strength to reduce fall-induced hip fracture risk. This most likely reflects the lack of any beneficial structural adaptations of cortical bone around the femoral neck in the athletes with these exercise loading histories. Considering the loading characteristics of the exercise types examined in the present doctoral research, the moderate-to-high loading magnitude alone appears insufficient but needs to be generated at the high loading rate and/or frequency to induce the beneficial adaptation in the proximal femur cortical bone. Therefore, in addition to aforementioned three impact exercise loading types, other exercise or sport types satisfying this condition may also be effective to increase or maintain the proximal femur bone strength to reduce fall- induced hip fracture risk. As a clinical prospect, the present findings highlight the importance of impact exercise in combating fall-induced hip fracture. Compared to the high-impact loading exercises (e.g., triple/long and high jumping exercise), the odd-impact [ball or invasion games (e.g., football/soccer, tennis)] and/or repetitive-impact loading exercises (e.g., endurance running, jogging, and perhaps vigorous walking) likely provide a safer and more feasible choice for the populations covering the sedentary adults to old people. This is due to the relatively more moderate ground impact involved in the odd- and repetitive-impact loading exercises than in the high-impact exercises. For young, physically active, and/or fit people, the above-mentioned or similar jumping exercises and any other exercise types consisting of the high ground impact (e.g., volleyball, basketball, gymnastics) can also be incorporated into their habitual exercise routines. Lastly, the present results were observed in the young adult females who had engaged in sport-specific training from their childhood/adolescence to early adulthood. Therefore, this calls for the prospective and/or retrospective observational studies to investigate whether the higher proximal femur bone strength to reduce fall-induced hip fracture risk obtained from the long-term specific impact exercise loading during these early phases of life can sustain into the later stages, especially after age of 65 years when the hip fracture is generally more common

    Spiral Complete Coverage Path Planning Based on Conformal Slit Mapping in Multi-connected Domains

    Full text link
    Generating a smooth and shorter spiral complete coverage path in a multi-connected domain is an important research area in robotic cavity machining. Traditional spiral path planning methods in multi-connected domains involve a subregion division procedure; a deformed spiral path is incorporated within each subregion, and these paths within the subregions are interconnected with bridges. In intricate domains with abundant voids and irregular boundaries, the added subregion boundaries increase the path avoidance requirements. This results in excessive bridging and necessitates longer uneven-density spirals to achieve complete subregion coverage. Considering that conformal slit mapping can transform multi-connected regions into regular disks or annuluses without subregion division, this paper presents a novel spiral complete coverage path planning method by conformal slit mapping. Firstly, a slit mapping calculation technique is proposed for segmented cubic spline boundaries with corners. Then, a spiral path spacing control method is developed based on the maximum inscribed circle radius between adjacent conformal slit mapping iso-parameters. Lastly, the spiral path is derived by offsetting iso-parameters. The complexity and applicability of the proposed method are comprehensively analyzed across various boundary scenarios. Meanwhile, two cavities milling experiments are conducted to compare the new method with conventional spiral complete coverage path methods. The comparation indicate that the new path meets the requirement for complete coverage in cavity machining while reducing path length and machining time by 12.70% and 12.34%, respectively.Comment: This article has not been formally published yet and may undergo minor content change

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    Advances in Molecular Simulation

    Get PDF
    Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies

    Imaging Techniques for Proton Range Determination in Proton Therapy

    Get PDF
    Proton therapy can achieve better sparing of normal tissues than the conventional photon radiation therapy due to proton’s Bragg Peak property. However, to unlock the full potential of protons, accurate prediction of in vivo proton stopping power ratio (SPR) is required for proton therapy treatment planning. The current standard practice is to map SPR from Hounsfield Unit (HU) values of a single-energy computed tomography (SECT) scan through a stoichiometric calibration technique. This technique is subjected to a variety of factors that congregate on the uncertainties in SPR estimation, including the calibration uncertainty (up to 0.5% to 1.8% of the total proton beam range), SECT uncertainty (beam hardening, reconstruction artifacts, etc.), and patient positioning uncertainty (misalignment, motions, and anatomical changes). Two emerging techniques have been proposed to improve proton SRP estimation accuracy in proton therapy: dual-energy computed tomography (DECT) and proton computed tomography (pCT). The former attempts to achieve better material differentiation than SECT by scanning the patient at two different photon energies. The latter aims to avoid sources of uncertainties in HU-to-SPR conversion by using protons directly as the imaging particle. A previously proved highly accurate DECT-based SPR mapping technique using a joint statistical image reconstruction method with a linear basis vector model (JSIR-BVM) was integrated with a clinical Monte Carlo-based treatment planning system (TPS) for dose prediction comparison with the standard stoichiometric SECT method. Percentage deviation from the ground-truth volume receiving 80% of the prescription dose within a 5 mm distal-ring region around the planning target volume was 2.6% for JSIR-BVM and 6.8% for SECT in the simulated case, showing a nontrivial risk of underdosing to the tumor region if planned with SECT. For the clinical head-and-neck cancer patient case, the percentage difference between JSIR-BVM and SECT in the mean dose and the volume receiving 80% of the prescription dose in a similarly defined ROI was 2.35% and 13.86%, respectively. The results demonstrate that our JSIR-BVM method provides more accurate and less variable mass-density maps than SECT for a simulation case with known ground truth, resulting in noticeable improvements in dose-calculation accuracy. Hence, this work constitutes an important transitional step towards realizing the clinical benefits of more accurate imaging of radiological quantities by JSIR-BVM. The clinical impact of the DECT-based JSIR-BVM SPR mapping technique was evaluated based on dose-volume histograms (DVHs), the mean dose in clinical target volume (CTV), and maximum dose within serial organs at risk (OARs). No recalculated DVH metric differed by more than 0.37% in 2 of the 3 cases. However, in the third case with the brainstem overlapping the CTV, when recalculated on the DECT SPR map, the mean dose to the CTV and the maximum dose in the brainstem increased from 54 Gy to 56 Gy and 55.1 Gy to 57.7 Gy, respectively, indicating a nontrivial risk in treatment toxicity associated with inaccurate prediction of proton beam range. The results validate that a methodology for evaluating the clinical impact of highly accurate DECT SPR maps has been developed. The differences between SECT and DECT dose distributions were clinically meaningful in one of the three evaluated patient cases. On the other hand, a novel pCT system has been proposed and developed as discussed in this dissertation. We first demonstrated the clinical feasibility through Monte Carlo simulation, then expanded the generality and compatibility of this technology for various beam characteristics with a model-based reconstruction explicitly developed for the system. The prototype of the pCT detector is composed of two strip ionization chambers measuring locations and lateral profiles of the exiting beam and a multi-layer ionization chamber (MLIC) measuring the integral depth doses (IDDs), which can be translated to residual energies of the exiting proton beams. A collimator with a round slit of 1 mm in diameter was placed in the central beam axis upstream from steering magnets to collimate the spot size down to 1 mm. The maximum deviation in reconstructed proton SPR from the ground truths was reported to be 1.02% in one of the 13 inserts when the number of protons per beamlet passing through the slit dropped to 103. The imaging dose was correlated linearly to incident protons and was determined to be 0.94 cGy if 103 protons per beamlet were used. Imaging quality was acceptable for planning purposes and held consistently through all levels of imaging dose. Spatial resolution was measured as 5 lp/cm in all simulations, varying imaging dose. The results prove the clinical feasibility of the pCT system with an imaging dose lower than kV cone-beam computed tomography (CBCT), making it potentially an excellent tool for localization and plan adaption in proton therapy. A reconstruction approach was developed to eliminate the use of a collimator by modeling the IDD of an uncollimated proton beam as a weighted sum of percentage depth doses (PDDs) of constituent narrow beamlets separated by 1mm. The beamlets\u27 water equivalent path lengths (WEPLs) were determined by iteratively minimizing the squared L2-norm of the forward projected and simulated IDDs. The final WEPL values were reconstructed into pCT images, i.e., proton SPR maps, through simultaneous algebraic reconstruction technique with total variation regularization (SART-TV). When the proposed reconstruction approach was applied, the percentage deviations from reference SPR were within ±1% in all selected ROIs. The mean absolute error of the reconstructed SPR was 0.33%, 0.19%, and 0.27% for the cylindrical phantom, and the adult phantom at the head and lung region, respectively. The frequency at 10% of the modulation transfer function (MTF) was 6.38 cm-1. The mean signal-to-noise ratio (SNR) of all the inserts was 2.45. The mean imaging dose was 0.29 cGy and 0.25 cGy at the head and lung region of the adult phantom, respectively. The results suggest that with the proposed reconstruction approach, the pCT system can achieve similar SPR accuracy and spatial resolution as the pCT system with an additional collimator while avoiding the potential side effects caused by extra neutron dose generated by collimating proton beams. Finally, the possibility of using the pCT system to extract proton scattering information was explored. Two forward models of predicting integrated transverse dose distribution of the exiting proton beam were implemented and compared. Moreover, the differential Molière model was utilized to reconstruct the scattering length of the imaging object. The scattering length map achieved 0.83% mean absolute deviation from the reference values when reconstructed through a modified simultaneous algebraic reconstruction technique (SART) algorithm and can be used as a correction for SPR estimation or to provide additional information in proton treatment planning. In summary, an evaluation study of dose prediction and clinical impact of the DECT-based JSIR-BVM SPR mapping technique was conducted. The transition of this highly accurate technique toward clinical application was established. Furthermore, a novel pCT system incorporated with a PBS facility and detected with an MLIC detector was proposed and developed. The feasibility of the system was proved through Monte Carlo simulation. Moreover, a reconstruction approach modeling the IDDs of the exiting proton beam was developed to further improve the system design by eliminating the additional hardware that may cause extra neutron dose and unnecessary quality assurance. Finally, proton scattering information was reconstructed using simulated data based on the pCT design, which can further improve SPR accuracy or provide additional patient anatomic information for proton treatment planning

    Collected Papers (on various scientific topics), Volume XIII

    Get PDF
    This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.‬‬‬‬‬‬‬

    Bifurcation analysis of the Topp model

    Get PDF
    In this paper, we study the 3-dimensional Topp model for the dynamicsof diabetes. We show that for suitable parameter values an equilibrium of this modelbifurcates through a Hopf-saddle-node bifurcation. Numerical analysis suggests thatnear this point Shilnikov homoclinic orbits exist. In addition, chaotic attractors arisethrough period doubling cascades of limit cycles.Keywords Dynamics of diabetes · Topp model · Reduced planar quartic Toppsystem · Singular point · Limit cycle · Hopf-saddle-node bifurcation · Perioddoubling bifurcation · Shilnikov homoclinic orbit · Chao
    corecore