88 research outputs found

    Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury

    Get PDF
    There is a need for a method of real-time assessment of brain metabolism during neonatal hypoxic-ischaemic encephalopathy (HIE). We have used broadband near-infrared spectroscopy (NIRS) to monitor cerebral oxygenation and metabolic changes in 50 neonates with HIE undergoing therapeutic hypothermia treatment. In 24 neonates, 54 episodes of spontaneous decreases in peripheral oxygen saturation (desaturations) were recorded between 6 and 81 h after birth. We observed differences in the cerebral metabolic responses to these episodes that were related to the predicted outcome of the injury, as determined by subsequent magnetic resonance spectroscopy derived lactate/N-acetyl-aspartate. We demonstrated that a strong relationship between cerebral metabolism (broadband NIRS-measured cytochrome-c-oxidase (CCO)) and cerebral oxygenation was associated with unfavourable outcome; this is likely to be due to a lower cerebral metabolic rate and mitochondrial dysfunction in severe encephalopathy. Specifically, a decrease in the brain tissue oxidation state of CCO greater than 0.06 ¡M per 1 ¡M brain haemoglobin oxygenation drop was able to predict the outcome with 64% sensitivity and 79% specificity (receiver operating characteristic area under the curve = 0.73). With further work on the implementation of this methodology, broadband NIRS has the potential to provide an early, cotside, non-invasive, clinically relevant metabolic marker of perinatal hypoxic-ischaemic injury

    Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy

    Get PDF
    BACKGROUND: Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS: Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS: CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r 2 = 0.46, p = 0.004, r 2 = 0.45, p = 0.004, respectively), TUNEL cell count (r 2 = 0.34, p = 0.02) and predicted both initial insult (r 2 = 0.62, p = 0.002) and outcome group (r 2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r 2 = 0.34, p = 0.01 and r 2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r 2 = 0.43, p = 0.01). CONCLUSION: Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model

    In Vivo Measurement of Cerebral Mitochondrial Metabolism Using Broadband Near Infrared Spectroscopy Following Neonatal Stroke

    Get PDF
    Neonatal stroke presents with features of encephalopathy and can result in significant morbidity and mortality. We investigated the cerebral metabolic and haemodynamic changes following neonatal stroke in a term infant at 24 h of life. Changes in oxidation state of cytochrome-c-oxidase (oxCCO) concentration were monitored along with changes in oxy- and deoxy- haemoglobin using a new broadband near-infrared spectroscopy (NIRS) system. Repeated transient changes in cerebral haemodynamics and metabolism were noted over a 3-h study period with decrease in oxyhaemoglobin (HbO2), deoxy haemoglobin (HHb) and oxCCO in both cerebral hemispheres without significant changes in systemic observations. A clear asymmetry was noted in the degree of change between the two cerebral hemispheres. Changes in cerebral oxygenation (measured as HbDiff=HbO2-HHb) and cerebral metabolism (measured as oxCCO) were highly coupled on the injured side of the brain

    Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    Get PDF
    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Ξ”[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Ξ”[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Ξ”[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Ξ”[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism

    Miniature Broadband-NIRS System to Measure CNS Tissue Oxygenation and Metabolism in Preclinical Research

    Get PDF
    In-vivo measurement of CNS tissue oxygenation and metabolism is critical in health and disease. Broadband-near infrared spectroscopy is a non-invasive optical technique which measures tissue oxygenation, haemodynamics and metabolism through in-vivo quantification of concentration changes of oxy- and deoxy-haemoglobin (Ξ”[HbO2] and Ξ”[HHb]) and oxidised cytochrome-c-oxidase (Ξ”[oxCCO]). Current commercially available NIRS systems only use a few wavelengths to measure concentration change that fails to provide accurate Ξ”[oxCCO] measurement. Broadband-NIRS instruments however, use more than 100 wavelengths which enables quantification of change in [oxCCO], an important marker of cellular oxidative metabolism. These systems tend to be bulky, requiring extensive calibrations and trained staff to operate them; making them less versatile and difficult to be adapted in the clinical environment. Furthermore, existing broadband-NIRS systems quantify chromophore concentration changes assuming a fixed optical pathlength across all the subjects using a previously measured DPF (differential pathlength factor) with time or frequency domain systems. This thesis describes the development of a portable broadband-NIRS system called mini-CYRIL β€œCYtochrome Research Instrument and appLication”, based on easily sourced components. A miniature white light source (HL-2000-HP) and miniature spectrometers (QE65pro and Ventana VIS-NIR) by Ocean Optics were customised for measuring CNS tissue oxygenation and metabolism. While having the features of commercially available NIRS systems in terms of portability, ease of use and no need for wavelength calibration, in terms of performance mini-CYRIL is comparable to broadband-NIRS instruments providing reliable Ξ”[oxCCO] measurements that have been validated and assessed through in-vivo tissue studies in (a) preclinical model of: (i) neonatal hypoxic-ischaemic (HI) encephalopathy, (ii) multiple sclerosis (MS) and (iii) low-light level therapy in the aged retina; (b) infants during brain functional activation. Mini-CYRIL is furthermore novel in offering calculation of absolute change in the concentration of chromophores based on real-time measurement of the optical path of light traversing the tissue. None of the current NIRS systems offer this feature which is crucial in case of changing pathology following an injury

    Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia

    Get PDF
    Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. Copyright

    Changes in Brain Tissue Oxygenation and Metabolism During Rewarming After Neonatal Encephalopathy are Related to Electrical Abnormality

    Get PDF
    Hypoxic ischemic encephalopathy (HIE) leads to significant mortality and morbidity, and therapeutic hypothermia (TH) has become a standard of care following HIE. After TH, the body temperature is brought back to 37Β Β°C. Early electroencephalography (EEG) is a reliable outcome biomarker following HIE. We hypothesized that changes in cerebral oxidative metabolism, measured as Ξ”[oxCCO], in relation to changes in brain tissue oxygenation (measured as Ξ”[HbD]) during rewarming will correlate with injury severity as evidenced on amplitude integrated EEG/EEG at initial presentation. Broadband near-infrared spectroscopy (NIRS) and systemic data were collected during rewarming from 14 infants following HIE over a mean period of 12.5Β h. All infants were monitored with video EEG telemetry using a standard neonatal montage. aEEG and EEG background was classified into mild, moderate and severely abnormal groups based on the background pattern. Two infants had mild, 6 infants had moderate and another 6 infants had severe abnormality at presentation. The relationship between [oxCCO] and [HbD] was evaluated between two groups of infants with abnormal electrical activity (mild vs moderate to severe). A significant difference was noted between the groups in the relationship between [oxCCO] and [HbD] (as r2) (pΒ =Β 0.02). This result indicates that the mitochondrial injury and deranged oxidative metabolism persists in the moderate to severely abnormal group during rewarming

    Cerebral Near Infrared Spectroscopy Monitoring in Term Infants With Hypoxic Ischemic Encephalopathyβ€”A Systematic Review

    Get PDF
    BACKGROUND: Neonatal hypoxic ischemic encephalopathy (HIE) remains a significant cause of mortality and morbidity worldwide. Cerebral near infrared spectroscopy (NIRS) can provide cot side continuous information about changes in brain hemodynamics, oxygenation and metabolism in real time. OBJECTIVE: To perform a systematic review of cerebral NIRS monitoring in term and near-term infants with HIE. SEARCH METHODS: A systematic search was performed in Ovid EMBASE and Medline database from inception to November 2019. The search combined three broad categories: measurement (NIRS monitoring), disease condition [hypoxic ischemic encephalopathy (HIE)] and subject category (newborn infants) using a stepwise approach as per PRISMA guidance. SELECTION CRITERIA: Only human studies published in English were included. DATA COLLECTION AND ANALYSIS: Two authors independently selected, assessed the quality, and extracted data from the studies for this review. RESULTS: Forty-seven studies on term and near-term infants following HIE were identified. Most studies measured multi-distance NIRS based cerebral tissue saturation using monitors that are referred to as cerebral oximeters. Thirty-nine studies were published since 2010; eight studies were published before this. Fifteen studies reviewed the neurodevelopmental outcome in relation to NIRS findings. No randomized study was identified. CONCLUSION: Commercial NIRS cerebral oximeters can provide important information regarding changes in cerebral oxygenation and hemodynamics following HIE and can be particularly helpful when used in combination with other neuromonitoring tools. Optical measurements of brain metabolism using broadband NIRS and cerebral blood flow using diffuse correlation spectroscopy add additional pathophysiological information. Further randomized clinical trials and large observational studies are necessary with proper study design to assess the utility of NIRS in predicting neurodevelopmental outcome and guiding therapeutic interventions

    Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system

    Get PDF
    We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin (  [  HbO₂ ]  ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation (Δ  [  HbDiff  ]    =  Δ  [  HbO₂  ]β€‰β€‰β€‰β€‰βˆ’β€‰β€‰Ξ”β€‰β€‰[  HHb  ]  ), blood volume (Δ  [  HbT  ]    =  Δ  [  HbO₂  ]    +  Δ  [  HHb  ]  ), and metabolism (Δ  [  oxCCO  ]  ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton (H1) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ  [  oxCCO  ]  -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed (p  <  0.0001) between the two groups based on this cut-off threshold of 79% Δ  [  oxCCO  ]  -RF. The severe injury group (n  =  13) had ∼30  %   smaller recovery in Δ  [  HbDiff  ]  -RF (p  =  0.0001) and no significant difference was observed in Δ  [  HbT  ]  -RF between groups. At 48 h post HI, significantly higher P31-MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) (p  =  0.01) and reduced phosphocreatine/epp (p  =  0.003) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult
    • …
    corecore