4,188 research outputs found

    Effects of transcranial alternating current stimulation on repetitive finger movements in healthy humans

    Get PDF
    Transcranial alternating current stimulation (tACS) is a noninvasive neurophysiological technique that can entrain brain oscillations. Only few studies have investigated the effects of tACS on voluntary movements. We aimed to verify whether tACS, delivered over M1 at beta and gamma frequencies, has any effect on repetitive finger tapping as assessed by means of kinematic analysis. Eighteen healthy subjects were enrolled. Objective measurements of repetitive finger tapping were obtained by using a motion analysis system. M1 excitability was assessed by using single-pulse TMS and measuring the amplitude of motor-evoked potentials (MEPs). Movement kinematic measures and MEPs were collected during beta, gamma, and sham tACS and when the stimulation was off. Beta tACS led to an amplitude decrement (i.e., progressive reduction in amplitude) across the first ten movements of the motor sequence while gamma tACS had the opposite effect. The results did not reveal any significant effect of tACS on other movement parameters, nor any changes in MEPs. These findings demonstrate that tACS modulates finger tapping in a frequency-dependent manner with no concurrent changes in corticospinal excitability. The results suggest that cortical beta and gamma oscillations are involved in the motor control of repetitive finger movements

    Spectral convergence in tapping and physiological fluctuations: coupling and independence of 1/f noise in the central and autonomic nervous systems.

    Get PDF
    When humans perform a response task or timing task repeatedly, fluctuations in measures of timing from one action to the next exhibit long-range correlations known as 1/f noise. The origins of 1/f noise in timing have been debated for over 20 years, with one common explanation serving as a default: humans are composed of physiological processes throughout the brain and body that operate over a wide range of timescales, and these processes combine to be expressed as a general source of 1/f noise. To test this explanation, the present study investigated the coupling vs. independence of 1/f noise in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for timing deviations were found to match those for key-press durations on an individual basis, and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a complex, multiscale relationship among 1/f noises arising from common sources, such as those arising from timing functions vs. those arising from autonomic nervous system (ANS) functions. Results also provide further evidence against the default hypothesis that 1/f noise in human timing is just the additive combination of processes throughout the brain and body. Our findings are better accommodated by theories of complexity matching that begin to formalize multiscale coordination as a foundation of human behavior

    Synchronized tapping facilitates learning sound sequences as indexed by the P300

    Get PDF
    The purpose of the present study was to determine whether and how single finger tapping in synchrony with sound sequences contributed to the auditory processing of them. The participants learned two unfamiliar sound sequences via different methods. In the tapping condition, they learned an auditory sequence while they tapped in synchrony with each sound onset. In the no tapping condition, they learned another sequence while they kept pressing a key until the sequence ended. After these learning sessions, we presented the two melodies again and recorded event-related potentials (ERPs). During the ERP recordings, 10% of the tones within each melody deviated from the original tones. An analysis of the grand average ERPs showed that deviant stimuli elicited a significant P300 in the tapping but not in the no-tapping condition. In addition, the significance of the P300 effect in the tapping condition increased as the participants showed highly synchronized tapping behavior during the learning sessions. These results indicated that single finger tapping promoted the conscious detection and evaluation of deviants within the learned sequences. The effect was related to individuals’ musical ability to coordinate their finger movements along with external auditory events

    Motion Capture System for Finger Movement Measurement in Parkinson Disease

    Get PDF
    Parkinson’s disease (PD) is a chronic neurodegenerative disorder that affects almost 1% of the population in the age group above 60 years. The key symptom in PD is the restriction of mobility. The progress of PD is typically documented using the Unified Parkinson’s Disease Rating Scale (UPDRS), which includes a finger-tapping test. We created a measurement tool and a methodology for the objective measurement of the finger-tapping test. We built a contactless three-dimensional (3D) capture system using two cameras and light-passive (wireless) reflexive markers. We proposed and implemented an algorithm for extracting, matching, and tracing markers. The system provides the 3D position of spherical or hemispherical markers in real time. The system’s functionality was verified with the commercial motion capture system OptiTrack. Our motion capture system is easy to use, saves space, is transportable, and needs only a personal computer for data processing—the ideal solution for an outpatient clinic. Its features were successfully tested on 22 patients with PD and 22 healthy control subjects

    Variability in bimanual coordination across the continuum of handedness.

    Get PDF
    Bimanual coordination is an essential human function requiring efficient interhemispheric communication to produce coordinated movements. Motor deficits affect a variety of clinical populations, yet a complete understanding of bimanual coordination has yet to be achieved. Previous research suggests performance variability depends on the phase demands of the coordinated task and completing bimanual tasks may result in less variability than unimanual tasks, or a bimanual advantage. Also, handedness and musical/athletic experience have also been shown to influence coordinated performance. The present study examined the existence of a bimanual advantage and potential factors influencing coordination in a tapping paradigm. Results indicated that the strong-handed individuals displayed a strong bimanual advantage; whereas, weak-handed participants had a weak bimanual advantage. Variability did not differ by musical/athletic experience. In light of the present findings, relevant studies are needed to gain further insight into bimanual coordination and the underlying processes of motor movement

    The influence of external and internal motor processes on human auditory rhythm perception

    Get PDF
    Musical rhythm is composed of organized temporal patterns, and the processes underlying rhythm perception are found to engage both auditory and motor systems. Despite behavioral and neuroscience evidence converging to this audio-motor interaction, relatively little is known about the effect of specific motor processes on auditory rhythm perception. This doctoral thesis was devoted to investigating the influence of both external and internal motor processes on the way we perceive an auditory rhythm. The first half of the thesis intended to establish whether overt body movement had a facilitatory effect on our ability to perceive the auditory rhythmic structure, and whether this effect was modulated by musical training. To this end, musicians and non-musicians performed a pulse-finding task either using natural body movement or through listening only, and produced their identified pulse by finger tapping. The results showed that overt movement benefited rhythm (pulse) perception especially for non-musicians, confirming the facilitatory role of external motor activities in hearing the rhythm, as well as its interaction with musical training. The second half of the thesis tested the idea that indirect, covert motor input, such as that transformed from the visual stimuli, could influence our perceived structure of an auditory rhythm. Three experiments examined the subjectively perceived tempo of an auditory sequence under different visual motion stimulations, while the auditory and visual streams were presented independently of each other. The results revealed that the perceived auditory tempo was accordingly influenced by the concurrent visual motion conditions, and the effect was related to the increment or decrement of visual motion speed. This supported the hypothesis that the internal motor information extracted from the visuomotor stimulation could be incorporated into the percept of an auditory rhythm. Taken together, the present thesis concludes that, rather than as a mere reaction to the given auditory input, our motor system plays an important role in contributing to the perceptual process of the auditory rhythm. This can occur via both external and internal motor activities, and may not only influence how we hear a rhythm but also under some circumstances improve our ability to hear the rhythm.Musikalische Rhythmen bestehen aus zeitlich strukturierten Mustern akustischer Stimuli. Es konnte gezeigt werden, dass die Prozesse, welche der Rhythmuswahrnehmung zugrunde liegen, sowohl motorische als auch auditive Systeme nutzen. Obwohl sich für diese auditiv-motorischen Interaktionen sowohl in den Verhaltenswissenschaften als auch Neurowissenschaften übereinstimmende Belege finden, weiß man bislang relativ wenig über die Auswirkungen spezifischer motorischer Prozesse auf die auditive Rhythmuswahrnehmung. Diese Doktorarbeit untersucht den Einfluss externaler und internaler motorischer Prozesse auf die Art und Weise, wie auditive Rhythmen wahrgenommen werden. Der erste Teil der Arbeit diente dem Ziel herauszufinden, ob körperliche Bewegungen es dem Gehirn erleichtern können, die Struktur von auditiven Rhythmen zu erkennen, und, wenn ja, ob dieser Effekt durch ein musikalisches Training beeinflusst wird. Um dies herauszufinden wurde Musikern und Nichtmusikern die Aufgabe gegeben, innerhalb von präsentierten auditiven Stimuli den Puls zu finden, wobei ein Teil der Probanden währenddessen Körperbewegungen ausführen sollte und der andere Teil nur zuhören sollte. Anschließend sollten die Probanden den gefundenen Puls durch Finger-Tapping ausführen, wobei die Reizgaben sowie die Reaktionen mittels eines computerisierten Systems kontrolliert wurden. Die Ergebnisse zeigen, dass offen ausgeführte Bewegungen die Wahrnehmung des Pulses vor allem bei Nichtmusikern verbesserten. Diese Ergebnisse bestätigen, dass Bewegungen beim Hören von Rhythmen unterstützend wirken. Außerdem zeigte sich, dass hier eine Wechselwirkung mit dem musikalischen Training besteht. Der zweite Teil der Doktorarbeit überprüfte die Idee, dass indirekte, verdeckte Bewegungsinformationen, wie sie z.B. in visuellen Stimuli enthalten sind, die wahrgenommene Struktur von auditiven Rhythmen beeinflussen können. Drei Experimente untersuchten, inwiefern das subjektiv wahrgenommene Tempo einer akustischen Sequenz durch die Präsentation unterschiedlicher visueller Bewegungsreize beeinflusst wird, wobei die akustischen und optischen Stimuli unabhängig voneinander präsentiert wurden. Die Ergebnisse zeigten, dass das wahrgenommene auditive Tempo durch die visuellen Bewegungsinformationen beeinflusst wird, und dass der Effekt in Verbindung mit der Zunahme oder Abnahme der visuellen Geschwindigkeit steht. Dies unterstützt die Hypothese, dass internale Bewegungsinformationen, welche aus visuomotorischen Reizen extrahiert werden, in die Wahrnehmung eines auditiven Rhythmus integriert werden können. Zusammen genommen, 5 zeigt die vorgestellte Arbeit, dass unser motorisches System eine wichtige Rolle im Wahrnehmungsprozess von auditiven Rhythmen spielt. Dies kann sowohl durch äußere als auch durch internale motorische Aktivitäten geschehen, und beeinflusst nicht nur die Art, wie wir Rhythmen hören, sondern verbessert unter bestimmten Bedingungen auch unsere Fähigkeit Rhythmen zu identifizieren

    From locomotion to dance and back : exploring rhythmic sensorimotor synchronization

    Full text link
    Le rythme est un aspect important du mouvement et de la perception de l’environnement. Lorsque l’on danse, la pulsation musicale induit une activité neurale oscillatoire qui permet au système nerveux d’anticiper les évènements musicaux à venir. Le système moteur peut alors s’y synchroniser. Cette thèse développe de nouvelles techniques d’investigation des rythmes neuraux non strictement périodiques, tels que ceux qui régulent le tempo naturellement variable de la marche ou la perception rythmes musicaux. Elle étudie des réponses neurales reflétant la discordance entre ce que le système nerveux anticipe et ce qu’il perçoit, et qui sont nécessaire pour adapter la synchronisation de mouvements à un environnement variable. Elle montre aussi comment l’activité neurale évoquée par un rythme musical complexe est renforcée par les mouvements qui y sont synchronisés. Enfin, elle s’intéresse à ces rythmes neuraux chez des patients ayant des troubles de la marche ou de la conscience.Rhythms are central in human behaviours spanning from locomotion to music performance. In dance, self-sustaining and dynamically adapting neural oscillations entrain to the regular auditory inputs that is the musical beat. This entrainment leads to anticipation of forthcoming sensory events, which in turn allows synchronization of movements to the perceived environment. This dissertation develops novel technical approaches to investigate neural rhythms that are not strictly periodic, such as naturally tempo-varying locomotion movements and rhythms of music. It studies neural responses reflecting the discordance between what the nervous system anticipates and the actual timing of events, and that are critical for synchronizing movements to a changing environment. It also shows how the neural activity elicited by a musical rhythm is shaped by how we move. Finally, it investigates such neural rhythms in patient with gait or consciousness disorders

    The Effects of Movement Activities on Beginning Instrumental String Students\u27 Perception of Musical Pulse and Rhythm

    Get PDF
    My primary purpose for this study was to investigate whether a variety of whole body activities and improvisational movement such as those traditionally used in the general music classroom could be used in the instrumental classroom to assist in internalizing basic musical concepts of steady pulse and rhythm. In addition to seeing improvement in many students\u27 musical responses such tasks provided a window for me to observe and identify other underlying issues that caused difficulty in synchronization and rhythmic performance for some children. This may be the most important discovery of the study; one that will open the way toward more effective individualized instruction for students who will benefit from additional help in rhythmic performance
    corecore