42 research outputs found

    Developing novel fluorescent probe for peroxynitrite: implication for understanding the roles of peroxynitrite and drug discovery in cerebral ischemia reperfusion injury

    Get PDF
    Session 7 - Oral PresentationsSTUDY GOAL: Peroxynitrite (ONOO‐) is a cytotoxic factor. As its short lifetime, ONOO‐ is hard to be detected in biological systems. This study aims to develop novel probe for detecting ONOO‐ and understand the roles of ONOO‐ in ischemic brains and drug discovery ABSTRACT: MitoPN‐1 was found to be a ONOO‐ specific probe with no toxicity. With MitoPN‐1, we studied the roles of ONOO‐ in hypoxic neuronal cells in vitro and MCAO …postprin

    Functional brain imaging with fMRI and MEG

    Get PDF
    The work described in this thesis was performed by the author, except where indicated. All the studies were accomplished on the 3 Tesla system within the Magnetic Resonance Centre at the University of Nottingham, and the Wellcome Trust MEG Laboratory at the Aston University during the period between October 1999 and June 2005. Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) are two promising brain function research modalities, sensitive to the hemodynamic and electrophysiological responses respectively during brain activites. The feasibility of joint employment of both modalities was examined in both spatial and temporal domains. A somatosensory tactile stimulus was adopted to induce simple functional reaction. It was shown that a reasonable spatial correspondence between fMRI and MEG can be established. Attempts were made on MEG recordings to extract suitable aspects for temporal features matching fMRI with a method reflecting the physical principles. It was shown that the this method is capable of exposing the nature of neural electric activities, although further development is required to perfect the strategy

    Nanoprobes for Tumor Theranostics

    Get PDF
    This book reports cutting-edge technology in nanoprobes or nanobiomaterials used for the accurate diagnosis and therapy of tumors, involving a multidisciplinary of chemistry, materials science, oncology, biology, and medicine

    Functional brain imaging with fMRI and MEG

    Get PDF
    The work described in this thesis was performed by the author, except where indicated. All the studies were accomplished on the 3 Tesla system within the Magnetic Resonance Centre at the University of Nottingham, and the Wellcome Trust MEG Laboratory at the Aston University during the period between October 1999 and June 2005. Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) are two promising brain function research modalities, sensitive to the hemodynamic and electrophysiological responses respectively during brain activites. The feasibility of joint employment of both modalities was examined in both spatial and temporal domains. A somatosensory tactile stimulus was adopted to induce simple functional reaction. It was shown that a reasonable spatial correspondence between fMRI and MEG can be established. Attempts were made on MEG recordings to extract suitable aspects for temporal features matching fMRI with a method reflecting the physical principles. It was shown that the this method is capable of exposing the nature of neural electric activities, although further development is required to perfect the strategy

    Novel Approaches for Structural Health Monitoring

    Get PDF
    The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field

    Topics in Adaptive Optics

    Get PDF
    Advances in adaptive optics technology and applications move forward at a rapid pace. The basic idea of wavefront compensation in real-time has been around since the mid 1970s. The first widely used application of adaptive optics was for compensating atmospheric turbulence effects in astronomical imaging and laser beam propagation. While some topics have been researched and reported for years, even decades, new applications and advances in the supporting technologies occur almost daily. This book brings together 11 original chapters related to adaptive optics, written by an international group of invited authors. Topics include atmospheric turbulence characterization, astronomy with large telescopes, image post-processing, high power laser distortion compensation, adaptive optics and the human eye, wavefront sensors, and deformable mirrors

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Motor learning induced neuroplasticity in minimally invasive surgery

    Get PDF
    Technical skills in surgery have become more complex and challenging to acquire since the introduction of technological aids, particularly in the arena of Minimally Invasive Surgery. Additional challenges posed by reforms to surgical careers and increased public scrutiny, have propelled identification of methods to assess and acquire MIS technical skills. Although validated objective assessments have been developed to assess motor skills requisite for MIS, they poorly understand the development of expertise. Motor skills learning, is indirectly observable, an internal process leading to relative permanent changes in the central nervous system. Advances in functional neuroimaging permit direct interrogation of evolving patterns of brain function associated with motor learning due to the property of neuroplasticity and has been used on surgeons to identify the neural correlates for technical skills acquisition and the impact of new technology. However significant gaps exist in understanding neuroplasticity underlying learning complex bimanual MIS skills. In this thesis the available evidence on applying functional neuroimaging towards assessment and enhancing operative performance in the field of surgery has been synthesized. The purpose of this thesis was to evaluate frontal lobe neuroplasticity associated with learning a complex bimanual MIS skill using functional near-infrared spectroscopy an indirect neuroimaging technique. Laparoscopic suturing and knot-tying a technically challenging bimanual skill is selected to demonstrate learning related reorganisation of cortical behaviour within the frontal lobe by shifts in activation from the prefrontal cortex (PFC) subserving attention to primary and secondary motor centres (premotor cortex, supplementary motor area and primary motor cortex) in which motor sequences are encoded and executed. In the cross-sectional study, participants of varying expertise demonstrate frontal lobe neuroplasticity commensurate with motor learning. The longitudinal study involves tracking evolution in cortical behaviour of novices in response to receipt of eight hours distributed training over a fortnight. Despite novices achieving expert like performance and stabilisation on the technical task, this study demonstrates that novices displayed persistent PFC activity. This study establishes for complex bimanual tasks, that improvements in technical performance do not accompany a reduced reliance in attention to support performance. Finally, least-squares support vector machine is used to classify expertise based on frontal lobe functional connectivity. Findings of this thesis demonstrate the value of interrogating cortical behaviour towards assessing MIS skills development and credentialing.Open Acces
    corecore