143 research outputs found

    QCMC: Quasi-conformal Parameterizations for Multiply-connected domains

    Full text link
    This paper presents a method to compute the {\it quasi-conformal parameterization} (QCMC) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map from a multiply-connected domain SS onto a punctured disk DSD_S associated with a given Beltrami differential. The Beltrami differential, which measures the conformality distortion, is a complex-valued function μ:S→C\mu:S\to\mathbb{C} with supremum norm strictly less than 1. Every Beltrami differential gives a conformal structure of SS. Hence, the conformal module of DSD_S, which are the radii and centers of the inner circles, can be fully determined by μ\mu, up to a M\"obius transformation. In this paper, we propose an iterative algorithm to simultaneously search for the conformal module and the optimal quasi-conformal parameterization. The key idea is to minimize the Beltrami energy subject to the boundary constraints. The optimal solution is our desired quasi-conformal parameterization onto a punctured disk. The parameterization of the multiply-connected domain simplifies numerical computations and has important applications in various fields, such as in computer graphics and vision. Experiments have been carried out on synthetic data together with real multiply-connected Riemann surfaces. Results show that our proposed method can efficiently compute quasi-conformal parameterizations of multiply-connected domains and outperforms other state-of-the-art algorithms. Applications of the proposed parameterization technique have also been explored.Comment: 26 pages, 23 figures, submitted. arXiv admin note: text overlap with arXiv:1402.6908, arXiv:1307.2679 by other author

    Fast Disk Conformal Parameterization of Simply-connected Open Surfaces

    Full text link
    Surface parameterizations have been widely used in computer graphics and geometry processing. In particular, as simply-connected open surfaces are conformally equivalent to the unit disk, it is desirable to compute the disk conformal parameterizations of the surfaces. In this paper, we propose a novel algorithm for the conformal parameterization of a simply-connected open surface onto the unit disk, which significantly speeds up the computation, enhances the conformality and stability, and guarantees the bijectivity. The conformality distortions at the inner region and on the boundary are corrected by two steps, with the aid of an iterative scheme using quasi-conformal theories. Experimental results demonstrate the effectiveness of our proposed method

    Optimization of Surface Registrations using Beltrami Holomorphic Flow

    Full text link
    In shape analysis, finding an optimal 1-1 correspondence between surfaces within a large class of admissible bijective mappings is of great importance. Such process is called surface registration. The difficulty lies in the fact that the space of all surface diffeomorphisms is a complicated functional space, making exhaustive search for the best mapping challenging. To tackle this problem, we propose a simple representation of bijective surface maps using Beltrami coefficients (BCs), which are complex-valued functions defined on surfaces with supreme norm less than 1. Fixing any 3 points on a pair of surfaces, there is a 1-1 correspondence between the set of surface diffeomorphisms between them and the set of BCs. Hence, every bijective surface map can be represented by a unique BC. Conversely, given a BC, we can reconstruct the unique surface map associated to it using the Beltrami Holomorphic flow (BHF) method. Using BCs to represent surface maps is advantageous because it is a much simpler functional space, which captures many essential features of a surface map. By adjusting BCs, we equivalently adjust surface diffeomorphisms to obtain the optimal map with desired properties. More specifically, BHF gives us the variation of the associated map under the variation of BC. Using this, a variational problem over the space of surface diffeomorphisms can be easily reformulated into a variational problem over the space of BCs. This makes the minimization procedure much easier. More importantly, the diffeomorphic property is always preserved. We test our method on synthetic examples and real medical applications. Experimental results demonstrate the effectiveness of our proposed algorithm for surface registration

    Teichm\"uller extremal mapping and its applications to landmark matching registration

    Full text link
    Registration, which aims to find an optimal 1-1 correspondence between shapes, is an important process in different research areas. Conformal mappings have been widely used to obtain a diffeomorphism between shapes that minimizes angular distortion. Conformal registrations are beneficial since it preserves the local geometry well. However, when landmark constraints are enforced, conformal mappings generally do not exist. This motivates us to look for a unique landmark matching quasi-conformal registration, which minimizes the conformality distortion. Under suitable condition on the landmark constraints, a unique diffeomporphism, called the Teichm\"uller extremal mapping between two surfaces can be obtained, which minimizes the maximal conformality distortion. In this paper, we propose an efficient iterative algorithm, called the Quasi-conformal (QC) iterations, to compute the Teichm\"uller mapping. The basic idea is to represent the set of diffeomorphisms using Beltrami coefficients (BCs), and look for an optimal BC associated to the desired Teichm\"uller mapping. The associated diffeomorphism can be efficiently reconstructed from the optimal BC using the Linear Beltrami Solver(LBS). Using BCs to represent diffeomorphisms guarantees the diffeomorphic property of the registration. Using our proposed method, the Teichm\"uller mapping can be accurately and efficiently computed within 10 seconds. The obtained registration is guaranteed to be bijective. The proposed algorithm can also be extended to compute Teichm\"uller mapping with soft landmark constraints. We applied the proposed algorithm to real applications, such as brain landmark matching registration, constrained texture mapping and human face registration. Experimental results shows that our method is both effective and efficient in computing a non-overlap landmark matching registration with least amount of conformality distortion.Comment: 26 pages, 21 figure

    Geometric Registration of High-genus Surfaces

    Full text link
    This paper presents a method to obtain geometric registrations between high-genus (g≥1g\geq 1) surfaces. Surface registration between simple surfaces, such as simply-connected open surfaces, has been well studied. However, very few works have been carried out for the registration of high-genus surfaces. The high-genus topology of the surface poses great challenge for surface registration. A possible approach is to partition surfaces into simply-connected patches and registration is done patch by patch. Consistent cuts are required, which are usually difficult to obtain and prone to error. In this work, we propose an effective way to obtain geometric registration between high-genus surfaces without introducing consistent cuts. The key idea is to conformally parameterize the surface into its universal covering space, which is either the Euclidean plane or the hyperbolic disk embedded in R2\mathbb{R}^2. Registration can then be done on the universal covering space by minimizing a shape mismatching energy measuring the geometric dissimilarity between the two surfaces. Our proposed algorithm effectively computes a smooth registration between high-genus surfaces that matches geometric information as much as possible. The algorithm can also be applied to find a smooth and bijective registration minimizing any general energy functionals. Numerical experiments on high-genus surface data show that our proposed method is effective for registering high-genus surfaces with geometric matching. We also applied the method to register anatomical structures for medical imaging, which demonstrates the usefulness of the proposed algorithm

    TEMPO: Feature-Endowed Teichm\"uller Extremal Mappings of Point Clouds

    Full text link
    In recent decades, the use of 3D point clouds has been widespread in computer industry. The development of techniques in analyzing point clouds is increasingly important. In particular, mapping of point clouds has been a challenging problem. In this paper, we develop a discrete analogue of the Teichm\"{u}ller extremal mappings, which guarantee uniform conformality distortions, on point cloud surfaces. Based on the discrete analogue, we propose a novel method called TEMPO for computing Teichm\"{u}ller extremal mappings between feature-endowed point clouds. Using our proposed method, the Teichm\"{u}ller metric is introduced for evaluating the dissimilarity of point clouds. Consequently, our algorithm enables accurate recognition and classification of point clouds. Experimental results demonstrate the effectiveness of our proposed method

    Parallelizable global conformal parameterization of simply-connected surfaces via partial welding

    Full text link
    Conformal surface parameterization is useful in graphics, imaging and visualization, with applications to texture mapping, atlas construction, registration, remeshing and so on. With the increasing capability in scanning and storing data, dense 3D surface meshes are common nowadays. While meshes with higher resolution better resemble smooth surfaces, they pose computational difficulties for the existing parameterization algorithms. In this work, we propose a novel parallelizable algorithm for computing the global conformal parameterization of simply-connected surfaces via partial welding maps. A given simply-connected surface is first partitioned into smaller subdomains. The local conformal parameterizations of all subdomains are then computed in parallel. The boundaries of the parameterized subdomains are subsequently integrated consistently using a novel technique called partial welding, which is developed based on conformal welding theory. Finally, by solving the Laplace equation for each subdomain using the updated boundary conditions, we obtain a global conformal parameterization of the given surface, with bijectivity guaranteed by quasi-conformal theory. By including additional shape constraints, our method can be easily extended to achieve disk conformal parameterization for simply-connected open surfaces and spherical conformal parameterization for genus-0 closed surfaces. Experimental results are presented to demonstrate the effectiveness of our proposed algorithm. When compared to the state-of-the-art conformal parameterization methods, our method achieves a significant improvement in both computational time and accuracy

    Conformal Surface Morphing with Applications on Facial Expressions

    Full text link
    Morphing is the process of changing one figure into another. Some numerical methods of 3D surface morphing by deformable modeling and conformal mapping are shown in this study. It is well known that there exists a unique Riemann conformal mapping from a simply connected surface into a unit disk by the Riemann mapping theorem. The dilation and relative orientations of the 3D surfaces can be linked through the M\"obius transformation due to the conformal characteristic of the Riemann mapping. On the other hand, a 3D surface deformable model can be built via various approaches such as mutual parameterization from direct interpolation or surface matching using landmarks. In this paper, we take the advantage of the unique representation of 3D surfaces by the mean curvatures and the conformal factors associated with the Riemann mapping. By registering the landmarks on the conformal parametric domains, the correspondence of the mean curvatures and the conformal factors for each surfaces can be obtained. As a result, we can construct the 3D deformation field from the surface reconstruction algorithm proposed by Gu and Yau. Furthermore, by composition of the M\"obius transformation and the 3D deformation field, the morphing sequence can be generated from the mean curvatures and the conformal factors on a unified mesh structure by using the cubic spline homotopy. Several numerical experiments of the face morphing are presented to demonstrate the robustness of our approach.Comment: 8 pages, 13 figure

    Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus

    Get PDF
    abstract: In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E(is an element of)4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.NOTICE: this is the author’s version of a work that was accepted for publication in NEUROIMAGE. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroimage, 78, 111-134 [2013] http://dx.doi.org/10.1016/j.neuroimage.2013.04.01

    Conformal Mapping and Brain Flattening

    Get PDF
    In this dissertation we study some of the main results concerning conformal mappings in the complex plane and between Riemann surfaces and we apply those results to the so-called brain flattening problem. In the first part of this thesis we prove the Riemann Mapping Theorem and we provide an introduction to the Uniformization Theorem for simply connected Riemann surfaces. The second part of the thesis is focused on the brain flattening problem, which deals with how to construct a conformal mapping from the brain's cortical surface to the unitary sphere. This procedure leads to a possible definition of the discrete mean curvature on a triangulated closed surface of genus zero. This flattening method has several applications in neuroscience
    • …
    corecore