6,692 research outputs found

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Modeling and Optimization Workshop

    Get PDF

    Hybridization of Energy Optimization Technique for Cluster Based Routing using Various Computational Intelligence Methods in WSN

    Get PDF
    Approaches in WSN technology has determined by opportunity of tiny and inexpensive sensor nodes with adequacy of sensing multiple kinds of information processing and wireless communication. Network lifetime and energy efficiency are major indexes of WSN. Several clustering techniques are intended to extend the network lifetime but whereas there is an issue of incompetent Cluster Head (CH) election. To overcome this issue, an Integration of Novel Memetic and Brain Storm Optimization approach with Levy Distribution (IoNM-BSOLyD) has been proposed for clustering using fitness function. In the meanwhile, election of CH is done by utilizing fitness function, which incorporates following amplitude such as energy, distance to adjacent nodes, distance to BS, and network load. After clustering, routing techniques decides the detecting and pursuing the route in WSN. In this proposed work, a Water Wave Optimization with Hill Climbing technique (WWO-HCg) is introduced for routing purpose. This proposed methodology deals with ternary QoS aspect such as network delay, energy consumption, packet delivery ratio, network lifetime and security to select optimal path and enhance QoS as well. This proposed protocol provides better performance result than other contemporary protocols
    • …
    corecore