153 research outputs found

    Tensor Decomposition for EEG Signal Retrieval

    Full text link
    Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic non-negative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications

    Early soft and flexible fusion of electroencephalography and functional magnetic resonance imaging via double coupled matrix tensor factorization for multisubject group analysis

    Get PDF
    Data fusion refers to the joint analysis of multiple datasets that provide different (e.g., complementary) views of the same task. In general, it can extract more information than separate analyses can. Jointly analyzing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measurements has been proved to be highly beneficial to the study of the brain function, mainly because these neuroimaging modalities have complementary spatiotemporal resolution: EEG offers good temporal resolution while fMRI is better in its spatial resolution. The EEG–fMRI fusion methods that have been reported so far ignore the underlying multiway nature of the data in at least one of the modalities and/or rely on very strong assumptions concerning the relation of the respective datasets. For example, in multisubject analysis, it is commonly assumed that the hemodynamic response function is a priori known for all subjects and/or the coupling across corresponding modes is assumed to be exact (hard). In this article, these two limitations are overcome by adopting tensor models for both modalities and by following soft and flexible coupling approaches to implement the multimodal fusion. The obtained results are compared against those of parallel independent component analysis and hard coupling alternatives, with both synthetic and real data (epilepsy and visual oddball paradigm). Our results demonstrate the clear advantage of using soft and flexible coupled tensor decompositions in scenarios that do not conform with the hard coupling assumption

    Tensor decomposition for EEG signals retrieval

    Get PDF
    © 2019 IEEE. Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic nonnegative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications

    Advanced tensor based signal processing techniques for wireless communication systems and biomedical signal processing

    Get PDF
    Many observed signals in signal processing applications including wireless communications, biomedical signal processing, image processing, and machine learning are multi-dimensional. Tensors preserve the multi-dimensional structure and provide a natural representation of these signals/data. Moreover, tensors provide often an improved identifiability. Therefore, we benefit from using tensor algebra in the above mentioned applications and many more. In this thesis, we present the benefits of utilizing tensor algebra in two signal processing areas. These include signal processing for MIMO (Multiple-Input Multiple-Output) wireless communication systems and biomedical signal processing. Moreover, we contribute to the theoretical aspects of tensor algebra by deriving new properties and ways of computing tensor decompositions. Often, we only have an element-wise or a slice-wise description of the signal model. This representation of the signal model does not reveal the explicit tensor structure. Therefore, the derivation of all tensor unfoldings is not always obvious. Consequently, exploiting the multi-dimensional structure of these models is not always straightforward. We propose an alternative representation of the element-wise multiplication or the slice-wise multiplication based on the generalized tensor contraction operator. Later in this thesis, we exploit this novel representation and the properties of the contraction operator such that we derive the final tensor models. There exist a number of different tensor decompositions that describe different signal models such as the HOSVD (Higher Order Singular Value Decomposition), the CP/PARAFAC (Canonical Polyadic / PARallel FACtors) decomposition, the BTD (Block Term Decomposition), the PARATUCK2 (PARAfac and TUCker2) decomposition, and the PARAFAC2 (PARAllel FACtors2) decomposition. Among these decompositions, the CP decomposition is most widely spread and used. Therefore, the development of algorithms for the efficient computation of the CP decomposition is important for many applications. The SECSI (Semi-Algebraic framework for approximate CP decomposition via SImultaneaous matrix diagonalization) framework is an efficient and robust tool for the calculation of the approximate low-rank CP decomposition via simultaneous matrix diagonalizations. In this thesis, we present five extensions of the SECSI framework that reduce the computational complexity of the original framework and/or introduce constraints to the factor matrices. Moreover, the PARAFAC2 decomposition and the PARATUCK2 decomposition are usually described using a slice-wise notation that can be expressed in terms of the generalized tensor contraction as proposed in this thesis. We exploit this novel representation to derive explicit tensor models for the PARAFAC2 decomposition and the PARATUCK2 decomposition. Furthermore, we use the PARAFAC2 model to derive an ALS (Alternating Least-Squares) algorithm for the computation of the PARAFAC2 decomposition. Moreover, we exploit the novel contraction properties for element wise and slice-wise multiplications to model MIMO multi-carrier wireless communication systems. We show that this very general model can be used to derive the tensor model of the received signal for MIMO-OFDM (Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao coded MIMO-OFDM, and randomly coded MIMO-OFDM systems. We propose the transmission techniques Khatri-Rao coding and random coding in order to impose an additional tensor structure of the transmit signal tensor that otherwise does not have a particular structure. Moreover, we show that this model can be extended to other multi-carrier techniques such as GFDM (Generalized Frequency Division Multiplexing). Utilizing these models at the receiver side, we design several types for receivers for these systems that outperform the traditional matrix based solutions in terms of the symbol error rate. In the last part of this thesis, we show the benefits of using tensor algebra in biomedical signal processing by jointly decomposing EEG (ElectroEncephaloGraphy) and MEG (MagnetoEncephaloGraphy) signals. EEG and MEG signals are usually acquired simultaneously, and they capture aspects of the same brain activity. Therefore, EEG and MEG signals can be decomposed using coupled tensor decompositions such as the coupled CP decomposition. We exploit the proposed coupled SECSI framework (one of the proposed extensions of the SECSI framework) for the computation of the coupled CP decomposition to first validate and analyze the photic driving effect. Moreover, we validate the effects of scull defects on the measurement EEG and MEG signals by means of a joint EEG-MEG decomposition using the coupled SECSI framework. Both applications show that we benefit from coupled tensor decompositions and the coupled SECSI framework is a very practical tool for the analysis of biomedical data.Zahlreiche messbare Signale in verschiedenen Bereichen der digitalen Signalverarbeitung, z.B. in der drahtlosen Kommunikation, im Mobilfunk, biomedizinischen Anwendungen, der Bild- oder akustischen Signalverarbeitung und dem maschinellen Lernen sind mehrdimensional. Tensoren erhalten die mehrdimensionale Struktur und stellen eine natürliche Darstellung dieser Signale/Daten dar. Darüber hinaus bieten Tensoren oft eine verbesserte Trennbarkeit von enthaltenen Signalkomponenten. Daher profitieren wir von der Verwendung der Tensor-Algebra in den oben genannten Anwendungen und vielen mehr. In dieser Arbeit stellen wir die Vorteile der Nutzung der Tensor-Algebra in zwei Bereichen der Signalverarbeitung vor: drahtlose MIMO (Multiple-Input Multiple-Output) Kommunikationssysteme und biomedizinische Signalverarbeitung. Darüber hinaus tragen wir zu theoretischen Aspekten der Tensor-Algebra bei, indem wir neue Eigenschaften und Berechnungsmethoden für die Tensor-Zerlegung ableiten. Oftmals verfügen wir lediglich über eine elementweise oder ebenenweise Beschreibung des Signalmodells, welche nicht die explizite Tensorstruktur zeigt. Daher ist die Ableitung aller Tensor-Unfoldings nicht offensichtlich, wodurch die multidimensionale Struktur dieser Modelle nicht trivial nutzbar ist. Wir schlagen eine alternative Darstellung der elementweisen Multiplikation oder der ebenenweisen Multiplikation auf der Grundlage des generalisierten Tensor-Kontraktionsoperators vor. Weiterhin nutzen wir diese neuartige Darstellung und deren Eigenschaften zur Ableitung der letztendlichen Tensor-Modelle. Es existieren eine Vielzahl von Tensor-Zerlegungen, die verschiedene Signalmodelle beschreiben, wie die HOSVD (Higher Order Singular Value Decomposition), CP/PARAFAC (Canonical Polyadic/ PARallel FACtors) Zerlegung, die BTD (Block Term Decomposition), die PARATUCK2-(PARAfac und TUCker2) und die PARAFAC2-Zerlegung (PARAllel FACtors2). Dabei ist die CP-Zerlegung am weitesten verbreitet und wird findet in zahlreichen Gebieten Anwendung. Daher ist die Entwicklung von Algorithmen zur effizienten Berechnung der CP-Zerlegung von besonderer Bedeutung. Das SECSI (Semi-Algebraic Framework for approximate CP decomposition via Simultaneaous matrix diagonalization) Framework ist ein effizientes und robustes Werkzeug zur Berechnung der approximierten Low-Rank CP-Zerlegung durch simultane Matrixdiagonalisierung. In dieser Arbeit stellen wir fünf Erweiterungen des SECSI-Frameworks vor, welche die Rechenkomplexität des ursprünglichen Frameworks reduzieren bzw. Einschränkungen für die Faktormatrizen einführen. Darüber hinaus werden die PARAFAC2- und die PARATUCK2-Zerlegung in der Regel mit einer ebenenweisen Notation beschrieben, die sich in Form der allgemeinen Tensor-Kontraktion, wie sie in dieser Arbeit vorgeschlagen wird, ausdrücken lässt. Wir nutzen diese neuartige Darstellung, um explizite Tensormodelle für diese beiden Zerlegungen abzuleiten. Darüber hinaus verwenden wir das PARAFAC2-Modell, um einen ALS-Algorithmus (Alternating Least-Squares) für die Berechnung der PARAFAC2-Zerlegungen abzuleiten. Weiterhin nutzen wir die neuartigen Kontraktionseigenschaften für elementweise und ebenenweise Multiplikationen, um MIMO Multi-Carrier-Mobilfunksysteme zu modellieren. Wir zeigen, dass dieses sehr allgemeine Modell verwendet werden kann, um das Tensor-Modell des empfangenen Signals für MIMO-OFDM- (Multiple- Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao codierte MIMO-OFDM- und zufällig codierte MIMO-OFDM-Systeme abzuleiten. Wir schlagen die Übertragungstechniken der Khatri-Rao-Kodierung und zufällige Kodierung vor, um eine zusätzliche Tensor-Struktur des Sendesignal-Tensors einzuführen, welcher gewöhnlich keine bestimmte Struktur aufweist. Darüber hinaus zeigen wir, dass dieses Modell auf andere Multi-Carrier-Techniken wie GFDM (Generalized Frequency Division Multiplexing) erweitert werden kann. Unter Verwendung dieser Modelle auf der Empfängerseite entwerfen wir verschiedene Typen von Empfängern für diese Systeme, die die traditionellen matrixbasierten Lösungen in Bezug auf die Symbolfehlerrate übertreffen. Im letzten Teil dieser Arbeit zeigen wir die Vorteile der Verwendung von Tensor-Algebra in der biomedizinischen Signalverarbeitung durch die gemeinsame Zerlegung von EEG-(ElectroEncephaloGraphy) und MEG- (MagnetoEncephaloGraphy) Signalen. Diese werden in der Regel gleichzeitig erfasst, wobei sie gemeinsame Aspekte derselben Gehirnaktivität beschreiben. Daher können EEG- und MEG-Signale mit gekoppelten Tensor-Zerlegungen wie der gekoppelten CP Zerlegung analysiert werden. Wir nutzen das vorgeschlagene gekoppelte SECSI-Framework (eine der vorgeschlagenen Erweiterungen des SECSI-Frameworks) für die Berechnung der gekoppelten CP Zerlegung, um zunächst den photic driving effect zu validieren und zu analysieren. Darüber hinaus validieren wir die Auswirkungen von Schädeldefekten auf die Messsignale von EEG und MEG durch eine gemeinsame EEG-MEG-Zerlegung mit dem gekoppelten SECSI-Framework. Beide Anwendungen zeigen, dass wir von gekoppelten Tensor-Zerlegungen profitieren, wobei die Methoden des gekoppelten SECSI-Frameworks erfolgreich zur Analyse biomedizinischer Daten genutzt werden können
    corecore