820 research outputs found

    Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy

    Get PDF
    Objective: The hypersynchronous neuronal activity associated with epilepsy causes widespread functional network disruptions extending beyond the epileptogenic zone. This altered network topology is considered a mediator for non-seizure symptoms, such as cognitive impairment. The aim of this study was to investigate functional network alterations in focal epilepsy patients with good seizure control and high quality of life. Methods: We compared twenty-two focal epilepsy patients and sixteen healthy controls on graph metrics derived from functional connectivity of source-level resting-state EEG. Graph metrics were calculated over a range of network densities in five frequency bands. Results: We observed a significantly increased small world index in patients relative to controls. On the local level, two left-hemisphere regions displayed a shift towards greater alpha band "hubness". The findings were not mediated by age, sex or education, nor by age of epilepsy onset, duration or focus lateralisation. Conclusions: Widespread functional network alterations are evident in focal epilepsy, even in a cohort characterised by successful anti-seizure medication therapy and high quality of life. These findings might support the position that functional network analysis could hold clinical relevance for epilepsy. Significance: Focal epilepsy is accompanied by global and local functional network aberrancies which might be implied in the sustenance of non-seizure symptoms. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band) connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1), and six months later (t2). At these time points, magnetoencephalography (MEG) was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length.</p> <p>Results</p> <p>At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology.</p> <p>Conclusions</p> <p>These results indicate that (pathologically) increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to seizures. Thus, functional connectivity and brain network architecture may prove to be important parameters of tumor-related epilepsy.</p

    Long-Term Effects of Temporal Lobe Epilepsy on Local Neural Networks: A Graph Theoretical Analysis of Corticography Recordings

    Get PDF
    Purpose: Pharmaco-resistant temporal lobe epilepsy (TLE) is often treated with surgical intervention at some point. As epilepsy surgery is considered a last resort by most physicians, a long history of epileptic seizures prior to surgery is not uncommon. Little is known about the effects of ongoing TLE on neural functioning. A better understanding of these effects might influence the moment of surgical intervention. Functional connectivity (interaction between spatially distributed brain areas) and network structure (integration and segregation of information processing) are thought to be essential for optimal brain functioning. We report on the impact of TLE duration on temporal lobe functional connectivity and network characteristics. Methods: Functional connectivity of the temporal lobe at the time of surgery was assessed by means of interictal electrocorticography (ECoG) recordings of 27 TLE patients by using the phase lag index (PLI). Graphs (abstract network representations) were reconstructed from the PLI matrix and characterized by the clustering coefficient C (local clustering), the path length L (overall network interconnectedness), and the ‘‘small world index’ ’ S (network configuration). Results: Functional connectivity (average PLI), clustering coefficients, and the small world index were negatively correlated with TLE duration in the broad frequency band (0.5–48 Hz). Discussion: Temporal lobe functional connectivity is lower in patients with longer TLE history, and longer TLE duration i

    Pharmaco-fMRI: A Tool to Predict the Response to Antiepileptic Drugs in Epilepsy

    Get PDF
    Pharmacological treatment with antiepilepticmedications (AEDs) in epilepsy is associated with a variety of neurocognitive side effects. However, the mechanisms underlying these side effects, and why certain brain anatomies are more affected still remain poorly understood. Advanced functional magnetic resonance imaging (fMRI) methods, such as pharmaco-fMRI, can investigate medication-related effects on brain activities using task and resting state fMRI and showing reproducible activation and deactivation patterns. This methodological approach has been used successfully to complement neuropsychological studies of AEDs. Here we review pharmaco-fMRI studies in people with epilepsy targeting the most-widely prescribed AEDs. Pharmco-fMRI has advanced our understanding of the impact of AEDs on specific brain networks and thus may provide potential biomarkers to move beyond the current “trial and error” approach when commencing anti-epileptic medication

    Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy:a resting state functional MRI study

    Get PDF
    Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and 'hub nodes' were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of 'hub nodes' between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies

    Whole Brain Network Dynamics of Epileptic Seizures at Single Cell Resolution

    Full text link
    Epileptic seizures are characterised by abnormal brain dynamics at multiple scales, engaging single neurons, neuronal ensembles and coarse brain regions. Key to understanding the cause of such emergent population dynamics, is capturing the collective behaviour of neuronal activity at multiple brain scales. In this thesis I make use of the larval zebrafish to capture single cell neuronal activity across the whole brain during epileptic seizures. Firstly, I make use of statistical physics methods to quantify the collective behaviour of single neuron dynamics during epileptic seizures. Here, I demonstrate a population mechanism through which single neuron dynamics organise into seizures: brain dynamics deviate from a phase transition. Secondly, I make use of single neuron network models to identify the synaptic mechanisms that actually cause this shift to occur. Here, I show that the density of neuronal connections in the network is key for driving generalised seizure dynamics. Interestingly, such changes also disrupt network response properties and flexible dynamics in brain networks, thus linking microscale neuronal changes with emergent brain dysfunction during seizures. Thirdly, I make use of non-linear causal inference methods to study the nature of the underlying neuronal interactions that enable seizures to occur. Here I show that seizures are driven by high synchrony but also by highly non-linear interactions between neurons. Interestingly, these non-linear signatures are filtered out at the macroscale, and therefore may represent a neuronal signature that could be used for microscale interventional strategies. This thesis demonstrates the utility of studying multi-scale dynamics in the larval zebrafish, to link neuronal activity at the microscale with emergent properties during seizures

    The organization of functional neurocognitive networks in focal epilepsy correlates with domain-specific cognitive performance

    Get PDF
    Understanding and diagnosing cognitive impairment in epilepsy remains a prominent challenge. New etiological models suggest that cognitive difficulties might not be directly linked to seizure activity, but are rather a manifestation of a broader brain pathology. Consequently, treating seizures is not sufficient to alleviate cognitive symptoms, highlighting the need for novel diagnostic tools. Here, we investigated whether the organization of three intrinsic, resting-state functional connectivity networks was correlated with domain-specific cognitive test performance. Using individualized EEG source reconstruction and graph theory, we examined the association between network small worldness and cognitive test performance in 23 patients with focal epilepsy and 17 healthy controls, who underwent a series of standardized pencil-and-paper and digital cognitive tests. We observed that the specific networks robustly correlated with test performance in distinct cognitive domains. Specifically, correlations were evident between the default mode network and memory in patients, the central-executive network and executive functioning in controls, and the salience network and social cognition in both groups. Interestingly, the correlations were evident in both groups, but in different domains, suggesting an alteration in these functional neurocognitive networks in focal epilepsy. The present findings highlight the potential clinical relevance of functional brain network dysfunction in cognitive impairment.Peer reviewe

    Quantitative Multimodal Mapping Of Seizure Networks In Drug-Resistant Epilepsy

    Get PDF
    Over 15 million people worldwide suffer from localization-related drug-resistant epilepsy. These patients are candidates for targeted surgical therapies such as surgical resection, laser thermal ablation, and neurostimulation. While seizure localization is needed prior to surgical intervention, this process is challenging, invasive, and often inconclusive. In this work, I aim to exploit the power of multimodal high-resolution imaging and intracranial electroencephalography (iEEG) data to map seizure networks in drug-resistant epilepsy patients, with a focus on minimizing invasiveness. Given compelling evidence that epilepsy is a disease of distorted brain networks as opposed to well-defined focal lesions, I employ a graph-theoretical approach to map structural and functional brain networks and identify putative targets for removal. The first section focuses on mesial temporal lobe epilepsy (TLE), the most common type of localization-related epilepsy. Using high-resolution structural and functional 7T MRI, I demonstrate that noninvasive neuroimaging-based network properties within the medial temporal lobe can serve as useful biomarkers for TLE cases in which conventional imaging and volumetric analysis are insufficient. The second section expands to all forms of localization-related epilepsy. Using iEEG recordings, I provide a framework for the utility of interictal network synchrony in identifying candidate resection zones, with the goal of reducing the need for prolonged invasive implants. In the third section, I generate a pipeline for integrated analysis of iEEG and MRI networks, paving the way for future large-scale studies that can effectively harness synergy between different modalities. This multimodal approach has the potential to provide fundamental insights into the pathology of an epileptic brain, robustly identify areas of seizure onset and spread, and ultimately inform clinical decision making
    corecore