375 research outputs found

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender

    Assessing the Reliability of Template-Based Clustering for Tractography in Healthy Human Adults

    Get PDF
    Tractography is a non-invasive technique to investigate the brain’s structural pathways (also referred to as tracts) that connect different brain regions. A commonly used approach for identifying tracts is with template-based clustering, where unsupervised clustering is first performed on a template in order to label corresponding tracts in unseen data. However, the reliability of this approach has not been extensively studied. Here, an investigation into template-based clustering reliability was performed, assessing the output from two datasets: Human Connectome Project (HCP) and MyConnectome project. The effect of intersubject variability on template-based clustering reliability was investigated, as well as the reliability of both deep and superficial white matter tracts. Identified tracts were evaluated by assessing Euclidean distances from a dataset-specific tract average centroid, the volumetric overlap across corresponding tracts, and along-tract agreement of quantitative values. Further, two template-based techniques were employed to evaluate the reliability of different clustering approaches. Reliability assessment can increase the confidence of a tract identifying technique in future applications to study pathways of interest. The two different template-based approaches exhibited similar reliability for identifying both deep white matter tracts and the superficial white matter

    Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware

    Get PDF
    Introduction Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Methods Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. Results A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7–16.5 mm). Conclusion We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols

    Orientation matching for diffusion tensor image registration.

    Get PDF
    This thesis develops a registration algorithm specifically for diffusion-tensor (DT) images. The proposed approach matches the tensor orientations to find the registration transformation. Early results show that local optimisation does not find the global minimum in registration of DT-MR brain images. Therefore, a global optimisation registration technique is also implemented. This thesis proposes several new similarity measures for DT registration and provides a comparison of them along with several others previously proposed in the literature. The thesis also proposes several new performance evaluation measures to assess registration quality and develops a performance evaluation framework that uses directional coherence and landmark separation. Experiments with direct optimisation demonstrate increased local minima in tensor registration objective functions over scalar registration. Using registration with global optimisation, this thesis compares the performance of scalar-derived similarity measures with those derived from the full tensor. Results suggest that similarity measures derived from the full tensor matrix do not find a more accurate registration than those based on the derived scalar indices. Affine and higher-order polynomial registration is not reliable enough to make a firm conclusion about whether diffusion tensor orientation matching improves the accuracy of registration over registration algorithms that ignore orientation. The main problem preventing a firm conclusion is that the local minima problem persists despite the use of global optimisation, causing poor registration of the regions of interest

    MODELING AND QUANTITATIVE ANALYSIS OF WHITE MATTER FIBER TRACTS IN DIFFUSION TENSOR IMAGING

    Get PDF
    Diffusion tensor imaging (DTI) is a structural magnetic resonance imaging (MRI) technique to record incoherent motion of water molecules and has been used to detect micro structural white matter alterations in clinical studies to explore certain brain disorders. A variety of DTI based techniques for detecting brain disorders and facilitating clinical group analysis have been developed in the past few years. However, there are two crucial issues that have great impacts on the performance of those algorithms. One is that brain neural pathways appear in complicated 3D structures which are inappropriate and inaccurate to be approximated by simple 2D structures, while the other involves the computational efficiency in classifying white matter tracts. The first key area that this dissertation focuses on is to implement a novel computing scheme for estimating regional white matter alterations along neural pathways in 3D space. The mechanism of the proposed method relies on white matter tractography and geodesic distance mapping. We propose a mask scheme to overcome the difficulty to reconstruct thin tract bundles. Real DTI data are employed to demonstrate the performance of the pro- posed technique. Experimental results show that the proposed method bears great potential to provide a sensitive approach for determining the white matter integrity in human brain. Another core objective of this work is to develop a class of new modeling and clustering techniques with improved performance and noise resistance for separating reconstructed white matter tracts to facilitate clinical group analysis. Different strategies are presented to handle different scenarios. For whole brain tractography reconstructed white matter tracts, a Fourier descriptor model and a clustering algorithm based on multivariate Gaussian mixture model and expectation maximization are proposed. Outliers are easily handled in this framework. Real DTI data experimental results show that the proposed algorithm is relatively effective and may offer an alternative for existing white matter fiber clustering methods. For a small amount of white matter fibers, a modeling and clustering algorithm with the capability of handling white matter fibers with unequal length and sharing no common starting region is also proposed and evaluated with real DTI data

    Spectral Clustering en IRM de diffusion pour Retrouver les Faisceaux de la Matière Blanche

    Get PDF
    White matter fiber clustering allows to get insight about anatomical structures in order to generate atlases, perform clear visualizations and compute statistics across subjects, all important and current neuroimaging problems. In this work, we present a Diffusion Maps clustering method applied to diffusion MRI in order to cluster and segment complex white matter fiber bundles. It is well-known that Diffusion Tensor Imaging (DTI) is restricted in complex fiber regions with crossings and this is why recent High Angular Resolution Diffusion Imaging (HARDI) such has Q-Ball Imaging (QBI) have been introduced to overcome these limitations. QBI reconstructs the diffusion orientation distribution function (ODF), a spherical function that has its maxima agreeing with the underlying fiber populations. In this paper, we introduce the usage of the Diffusion Maps technique and show how it can be used to directly cluster set of fiber tracts, that could be obtained through a streamline tractography for instance, and how it can also help in segmenting fields of ODF images, obtained through a linear and regularized ODF estimation algorithm based on a spherical harmonics representation of the Q-Ball data. We first show the advantage of using Diffusion Maps clustering over classical methods such as N-Cuts and Laplacian Eigenmaps in both cases. In particular, our Diffusion Maps requires a smaller number of hypothesis from the input data, reduces the number of artifacts in fiber tract clustering and ODF image segmentation and automatically exhibits the number of clusters in both cases by using an adaptive scale-space parameter. We also show that our ODF Diffusion Maps clustering can reproduce published results using the diffusion tensor (DT) clustering with N-Cuts on simple synthetic images without crossings. On more complex data with crossings, we show that our ODF-based method succeeds to separate fiber bundles and crossing regions whereas the DT-based methods generate artifacts and exhibit wrong number of clusters. Finally, we illustrate the potential of our approach on a real brain dataset where we successfully segment well-known fiber bundles

    An in vivo investigation of short-ranged structural connectivity in the human brain

    Get PDF
    Short-ranged connectivity comprise the majority of connections throughout the brain, joining together nearby regions and contributing to important networks that facilitate complex function and cognition. Despite constituting the majority of white matter in the brain and their importance, studies examining short-ranged connections have thus far been limited in part due to the challenges associated with identifying and validating them. Tractography, a computational technique for reconstructing axon trajectories from diffusion magnetic resonance imaging, has been commonly used to identify and study major white connections (e.g. corticospinal tract), which are easier to identify relative to the short-ranged connections. The use of additional constraints (e.g. geometry, regions of interest) together with tractography has enabled the ability to identify short-ranged connections of interest, such as the ”U”-shaped tracts residing just below the cortical surface, and the subcortical connectome tracts found in the deep brain. In this thesis, we aimed to quantify the reliability of such techniques for studying the short- ranged connections and applied them to examine changes to short-ranged connectivity in patients with first episode schizophrenia. First, the reliability of identifying short-ranged, ”U”- shaped tracts is examined in Chapter 1, leveraging geometric constraints for identifying the ”U”-shaped geometry together with clustering techniques to establish distinct tracts. Here, we two different clustering techniques, applying them to two datasets to study both the reliability of identifying short-ranged, ”U”-shaped tracts across different subjects and in a single individual (across different sessions). In Chapter 2, the reliability for identifying the subcortical connectome (short-ranged connections between subcortical structures) is evaluated. Connectivity of the deep brain is often hard to recapitulate due to the multiple orientations contributing to com- plex diffusion signals. Thus, we leveraged regions of interests determined through histological data to aid identification of the short-ranged connections in the compact region. Finally, Chapter 4, uses the techniques from chapter 2 in combination with quantitative measures sensitive to microstructural changes to study changes to short-ranged, ”U”-shaped tracts in the frontal lobes of patients with first-episode schizophrenia (FES). By studying the short-ranged connections in patients with FES, biomarkers associated with clinical presentation may be elucidated and may aid the current understanding to improve future treatment. Overall, the projects presented here quantify the reliability of current techniques for investigating short-ranged connectivity and provides a framework for evaluating of future techniques. Additionally, the techniques evaluated here can be used to elucidate new findings and improve treatment in clinical popula- tions

    A New Shape Similarity Framework for brain fibers classification

    Get PDF
    Diffusion Magnetic Resonance Imaging (dMRI) techniques provide a non-invasive way to explore organization and integrity of the white matter structures in human brain. dMRI quantifies in each voxel, the diffusion process of water molecules which are mechanically constrained in their motion by the axons of the neurons. This technique can be used in surgical planning and in the study of anatomical connectivity, brain changes and mental disorders. From dMRI data, white matter fiber tracts can be reconstructed using a class of technique called tractography. The dataset derived by tractography is composed by a large number of streamlines, which are sequences of points in 3D space. To simplify the visualization and analysis of white matter fiber tracts obtained from tracking algorithms, it is often necessary to group them into larger clusters or bundles. This step is called clustering. In order to perform clustering, a mathematical definition of fiber similarity (or more commonly a fiber distance) must be specified. On the basis of this metric, pairwise fiber distance can be computed and used as input for a clustering algorithm. The most common metrics used for distance measure are able to capture only the local relationship between streamlines but not the global structure of the fiber. The global structure refers to the variability of the shape. Together, local and global information, can define a better metric of similarity. We have extracted the global information using a mathematical representation based on the study of the tract with Frénet equations. In particular, we have defined some intrinsic parameters of the fibers that led to a classification of the tracts based on global geometrical characteristics. Using these parameters, a new distance metric for fiber similarity has been developed. For the evaluation of the goodness of the new metric, indices were used for a qualitative study of the results
    • …
    corecore