3,974 research outputs found

    : Hibridni samopodešavajući fuzzy PID regulator za upravljanje brzinom bezkolektorskog istosmjernog motora

    Get PDF
    The objective of the proposed work is to investigate the performance of hybrid self tuned fuzzy proportional integral derivative (STFPID) controller for brushless DC (BLDC) motor drive. The proposed hybrid STFPID controller includes a proportional integral derivative (PID) controller at steady state, a PID type self tuned fuzzy logic (FL) controller (STFLC) at transient state thereby combining the merits of both the controllers. The switching function incorporated in the controller ensures desired control response at various operating conditions by appropriately switching between PID and STFPID based on speed error. A detailed simulation study and performance comparison with other control approaches is performed to highlight the merits of the proposed work. The simulation results indicate that the proposed controller is robust with fast tracking capability and less steady state error. The experimental results are provided to validate the simulation study.Cilj ovog rada je istražiti performance hibridnog samopodešavajućeg regulatora za bezkolektorski istosmjerni motor. Predloženi hibridni samopodešavajući fuzzy regulator uključuje PID regulator u stacionarnom stanju i samopodešavajući fuzzy PID regulator (STFLC) za vrijeme trajanja prijelazne pojave kombinirajući prednosti oba regulatora. Funkcija prekapčanja regulatora omogućava upravljanje u različitim uvjetima odgovarajućim odabirom između PID i samopodešavajućeg fuzzy PID regulatora na temelju brzine pogreške. Provedena je detaljna simulacijska analiza i usporedba performanci s ostalim metodama upravljanja kako bi se istaknule prednosti predloženog rada. Iz simulacijskih rezultata je vidljivo je robusno svojstvo predloženenog regulatora te smanjena pogreška u stacionarnom stanju. Sustav pravljanja testiran je i eksperimentalno kao potvrda simulacijskih rezultata

    Brain Emotional Learning Based Intelligent Controller And Its Application To Continuous Stirred Tank Reactor

    Get PDF
    This paper investigates an intelligent control approach towards Continuous Stirred Tank Reactor in chemical engineering. CSTR is a well known in process control and it offers a diverse range of research in chemical and control engineering. Brain emotional learning based intelligent controller (BELBIC) is an intelligent controller based on the model of Limbic system of brain. Our objective is to implement Computational Model of Brain Emotional Learning Based Intelligence Controller(BELBIC) and its Application To CSTR . Model design and simulations are done in MATLAB™ SIMULINK® software. Keywords: CSTR, BELBIC, Limbic system, Amygdala, Orbitofrontal corte

    Robotic Smart Prosthesis Arm with BCI and Kansei / Kawaii / Affective Engineering Approach. Pt I: Quantum Soft Computing Supremacy

    Get PDF
    A description of the design stage and results of the development of the conceptual structure of a robotic prosthesis arm is given. As a result, a prototype of manmade prosthesis on a 3D printer as well as a foundation for computational intelligence presented. The application of soft computing technology (the first step of IT) allows to extract knowledge directly from the physical signal of the electroencephalogram, as well as to form knowledge-based intelligent robust control of the lower performing level taking into account the assessment of the patient’s emotional state. The possibilities of applying quantum soft computing technologies (the second step of IT) in the processes of robust filtering of electroencephalogram signals for the formation of mental commands and quantum supremacy simulation of robotic prosthetic arm discussed

    Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems

    Get PDF
    [[abstract]]The brain emotional learning model can be implemented with a simple hardware and processor; however, the learning model cannot model the qualitative aspects of human knowledge. To solve this problem, a fuzzy-based emotional learning model (FELM) with structure and parameter learning is proposed. The membership functions and fuzzy rules can be learned through the derived learning scheme. Further, an emotional fuzzy sliding-mode control (EFSMC) system, which does not need the plant model, is proposed for unknown nonlinear systems. The EFSMC system is applied to an inverted pendulum and a chaotic synchronization. The simulation results with the use of EFSMC system demonstrate the feasibility of FELM learning procedure. The main contributions of this paper are (1) the FELM varies its structure dynamically with a simple computation; (2) the parameter learning imitates the role of emotions in mammalians brain; (3) by combining the advantage of nonsingular terminal sliding-mode control, the EFSMC system provides very high precision and finite-time control performance; (4) the system analysis is given in the sense of the gradient descent method.[[notice]]補正完

    Human Being Emotion in Cognitive Intelligent Robotic Control Pt I: Quantum / Soft Computing Approach

    Get PDF
    Abstract. The article consists of two parts. Part I shows the possibility of quantum / soft computing optimizers of knowledge bases (QSCOptKB™) as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface. In particular, case, the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™ and QCOptKB™ sophisticated toolkit. Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described. The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown. Developed information technology examined with special (difficult in diagnostic practice) examples emotion state estimation of autism children (ASD) and dementia and background of the knowledge bases design for intelligent robot of service use is it. Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Semi-active vibration control of a non-collocated civil structure using evolutionary-based BELBIC

    Get PDF
    A buildings resilience to seismic activity can be increased by providing ways for the structure to dynamically counteract the effect of the Earth’s crust movements. This ability is fundamental in certain regions of the globe, where earthquakes are more frequent, and can be achieved using different strategies. State-of-the-art anti-seismic buildings have, embedded on their structure, mostly passive actuators such as base isolation, Tuned Mass Dampers (TMD) and viscous dampers that can be used to reduce the effect of seismic or even wind induced vibrations. The main disadvantage of this type of building vibration reduction strategies concerns their inability to adapt their properties in accordance to both the excitation signal or structural behaviour. This adaption capability can be promoted by adding to the building active type actuators operating under a closed-loop. However, these systems are substantially larger than passive type solutions and require a considerable amount of energy that may not be available during a severe earthquake due to power grid failure. An intermediate solution between these two extremes is the introduction of semi-active actuators such as magneto–rheological dampers. The inclusion of magneto–rheological actuators is among one of the most promising semi-active techniques. However, the overall performance of this strategy depends on several aspects such as the actuators number and location within the structure and the vibration sensors network. It can be the case where the installation leads to a non-collocated system which presents additional challenges to control. This paper proposes to tackle the problem of controlling the vibration of a non-collocated three-storey building by means of a brain–emotional controller tuned using an evolutionary algorithm. This controller will be used to adjust the stiffness coefficient of a magneto–rheological actuator such that the building’s frame oscillation under earthquake excitation, is mitigated. The obtained results suggest that, using this control strategy, it is possible to reduce the building vibration to secure levelsinfo:eu-repo/semantics/publishedVersio
    • …
    corecore