46,197 research outputs found

    Modeling differences in the time-frequency representation of EEG signals through HMM’s for classification of imaginary motor tasks

    Get PDF
    Brain Computer interfaces are systems that allow the control of external devices using the information extracted from the brain signals. Such systems find applications in rehabilitation, as an alternative communication channel and in multimedia applications for entertainment and gaming. In this work, a new approach based on the Time-Frequency (TF) distribution of the signal power, obtained by autoregressive methods and the use Hidden Markov models (HMM) is developed. This approach take into account the changes of power on different frequency bands with time. For that purpose HMM’s are used to modeling the changes in the power during the execution of two different motor tasks. The use of TF methods involves a problem related to the selection of the frequency bands that can lead to over fitting (due to the course of dimensionality) as well as problems related to the selection of the model parameters. These problems are solved in this work by combining two methods for feature selection: Fisher Score and Sequential Floating Forward Selection. The results are compared to the three top results of the BCI competition IV. It is shown here that the proposed method over perform those other methods in four subjects and the average over all the subjects equals the one obtained by the winner algorithm of the competition

    What BCI research needs

    Get PDF

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    Optimization-based interactive segmentation interface for multiregion problems.

    Get PDF
    Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality

    Personalized Brain-Computer Interface Models for Motor Rehabilitation

    Full text link
    We propose to fuse two currently separate research lines on novel therapies for stroke rehabilitation: brain-computer interface (BCI) training and transcranial electrical stimulation (TES). Specifically, we show that BCI technology can be used to learn personalized decoding models that relate the global configuration of brain rhythms in individual subjects (as measured by EEG) to their motor performance during 3D reaching movements. We demonstrate that our models capture substantial across-subject heterogeneity, and argue that this heterogeneity is a likely cause of limited effect sizes observed in TES for enhancing motor performance. We conclude by discussing how our personalized models can be used to derive optimal TES parameters, e.g., stimulation site and frequency, for individual patients.Comment: 6 pages, 6 figures, conference submissio
    • …
    corecore