3,970 research outputs found

    Bradykinesia models of Parkinson’s disease

    Get PDF
    This entry describes a plethora of experimental observations from PD bradykinesia in humans and animals ranging across neuronal, electromyographic and behavioral levels and discusses related theoretical and computational models developed to reproduce and explain these findings. Some computational models of bradykinesia have focused entirely on the effects of dopamine depletion in the basal ganglio-thalamo-cortical relations, whereas others emphasize dopamine depletion in cortico-spino-muscular interactions. Future models will have to produce a more comprehensive and detailed neural model of basal ganglia-thalamo-cortico-spino-muscular interactions, in order to study more systematically the effects of dopamine depletion in these nuclei and integrate into a ‘unified theory’ all the known neurophysiological, EMG and behavioral observations associated with parkinsonism

    Increased bradykinesia in Parkinson’s disease with increased movement complexity: elbow flexion-extension movements

    Get PDF
    The present research investigates factors contributing to bradykinesia in the control of simple and complex voluntary limb movement in Parkinson’s disease (PD) patients. The functional scheme of the basal ganglia (BG)–thalamocortical circuit was described by a mathematical model based on the mean firing rates of BG nuclei. PD was simulated as a reduction in dopamine levels, and a loss of functional segregation between two competing motor modules. In order to compare model simulations with performed movements, flexion and extension at the elbow joint is taken as a test case. Results indicated that loss of segregation contributed to bradykinesia due to interference between competing modules and a reduced ability to suppress unwanted movements. Additionally, excessive neurotransmitter depletion is predicted as a possible mechanism for the increased difficulty in performing complex movements. The simulation results showed that the model is in qualitative agreement with the results from movement experiments on PD patients and healthy subjects. Furthermore, based on changes in the firing rate of BG nuclei, the model demonstrated that the effective mechanism of Deep Brain Stimulation (DBS) in STN may result from stimulation induced inhibition of STN, partial synaptic failure of efferent projections, or excitation of inhibitory afferent axons even though the underlying methods of action may be quite different for the different mechanisms

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders
    • …
    corecore