14 research outputs found

    Boxicity of Line Graphs

    Get PDF
    Boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R^k. In this paper, we show that for a line graph G of a multigraph, box(G) <= 2\Delta(\lceil log_2(log_2(\Delta)) \rceil + 3) + 1, where \Delta denotes the maximum degree of G. Since \Delta <= 2(\chi - 1), for any line graph G with chromatic number \chi, box(G) = O(\chi log_2(log_2(\chi))). For the d-dimensional hypercube H_d, we prove that box(H_d) >= (\lceil log_2(log_2(d)) \rceil + 1)/2. The question of finding a non-trivial lower bound for box(H_d) was left open by Chandran and Sivadasan in [L. Sunil Chandran and Naveen Sivadasan. The cubicity of Hypercube Graphs. Discrete Mathematics, 308(23):5795-5800, 2008]. The above results are consequences of bounds that we obtain for the boxicity of fully subdivided graphs (a graph which can be obtained by subdividing every edge of a graph exactly once).Comment: 14 page

    On Generalizations of Pairwise Compatibility Graphs

    Full text link
    A graph GG is a PCG if there exists an edge-weighted tree such that each leaf of the tree is a vertex of the graph, and there is an edge {x,y}\{ x, y \} in GG if and only if the weight of the path in the tree connecting xx and yy lies within a given interval. PCGs have different applications in phylogenetics and have been lately generalized to multi-interval-PCGs. In this paper we define two new generalizations of the PCG class, namely k-OR-PCGs and k-AND-PCGs, that are the classes of graphs that can be expressed as union and intersection, respectively, of kk PCGs. The problems we consider can be also described in terms of the \emph{covering number} and the \emph{intersection dimension} of a graph with respect to the PCG class. In this paper we investigate how the classes of PCG, multi-interval-PCG, OR-PCG and AND-PCG are related to each other and to other graph classes known in the literature. In particular, we provide upper bounds on the minimum kk for which an arbitrary graph GG belongs to k-interval-PCG, k-OR-PCG and k-AND-PCG classes. Furthermore, for particular graph classes, we improve these general bounds. Moreover, we show that, for every integer kk, there exists a bipartite graph that is not in the k-interval-PCG class, proving that there is no finite kk for which the k-interval-PCG class contains all the graphs. Finally, we use a Ramsey theory argument to show that for any kk, there exist graphs that are not in k-AND-PCG, and graphs that are not in k-OR-PCG

    An Efficient Representation for Filtrations of Simplicial Complexes

    Get PDF
    A filtration over a simplicial complex KK is an ordering of the simplices of KK such that all prefixes in the ordering are subcomplexes of KK. Filtrations are at the core of Persistent Homology, a major tool in Topological Data Analysis. In order to represent the filtration of a simplicial complex, the entire filtration can be appended to any data structure that explicitly stores all the simplices of the complex such as the Hasse diagram or the recently introduced Simplex Tree [Algorithmica '14]. However, with the popularity of various computational methods that need to handle simplicial complexes, and with the rapidly increasing size of the complexes, the task of finding a compact data structure that can still support efficient queries is of great interest. In this paper, we propose a new data structure called the Critical Simplex Diagram (CSD) which is a variant of the Simplex Array List (SAL) [Algorithmica '17]. Our data structure allows one to store in a compact way the filtration of a simplicial complex, and allows for the efficient implementation of a large range of basic operations. Moreover, we prove that our data structure is essentially optimal with respect to the requisite storage space. Finally, we show that the CSD representation admits fast construction algorithms for Flag complexes and relaxed Delaunay complexes.Comment: A preliminary version appeared in SODA 201

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    An Efficient Representation for Filtrations of Simplicial Complexes

    Get PDF
    International audienceA filtration over a simplicial complex K is an ordering of the simplices of K such that all prefixes in the ordering are subcomplexes of K. Filtrations are at the core of Persistent Homology, a major tool in Topo-logical Data Analysis. In order to represent the filtration of a simplicial complex, the entire filtration can be appended to any data structure that explicitly stores all the simplices of the complex such as the Hasse diagram or the recently introduced Simplex Tree [Algorithmica '14]. However, with the popularity of various computational methods that need to handle simplicial complexes, and with the rapidly increasing size of the complexes, the task of finding a compact data structure that can still support efficient queries is of great interest. This direction has been recently pursued for the case of maintaining simplicial complexes. For instance, Boissonnat et al. [Algorithmica '17] considered storing the simplices that are maximal with respect to inclusion and Attali et al. [IJCGA '12] considered storing the simplices that block the expansion of the complex. Nevertheless, so far there has been no data structure that compactly stores the filtration of a simplicial complex, while also allowing the efficient implementation of basic operations on the complex. In this paper, we propose a new data structure called the Critical Simplex Diagram (CSD) which is a variant of the Simplex Array List (SAL) [Algorithmica '17]. Our data structure allows one to store in a compact way the filtration of a simplicial complex, and allows for the efficient implementation of a large range of basic operations. Moreover, we prove that our data structure is essentially optimal with respect to the requisite storage space. Finally, we show that the CSD representation admits fast construction algorithms for Flag complexes and relaxed Delaunay complexes

    Subject index volumes 1–92

    Get PDF

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore