2,060 research outputs found

    Box Drawings for Learning with Imbalanced Data

    Get PDF
    The vast majority of real world classification problems are imbalanced, meaning there are far fewer data from the class of interest (the positive class) than from other classes. We propose two machine learning algorithms to handle highly imbalanced classification problems. The classifiers constructed by both methods are created as unions of parallel axis rectangles around the positive examples, and thus have the benefit of being interpretable. The first algorithm uses mixed integer programming to optimize a weighted balance between positive and negative class accuracies. Regularization is introduced to improve generalization performance. The second method uses an approximation in order to assist with scalability. Specifically, it follows a \textit{characterize then discriminate} approach, where the positive class is characterized first by boxes, and then each box boundary becomes a separate discriminative classifier. This method has the computational advantages that it can be easily parallelized, and considers only the relevant regions of feature space

    Deep learning for symbols detection and classification in engineering drawings.

    Get PDF
    Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly due to the need to improve business practices such as inventory, assets management, risk analysis, and other types of applications. However, processing and analysing these drawings is a challenging task. A typical diagram often contains a large number of different types of symbols belonging to various classes and with very little variation among them. Another key challenge is the class-imbalance problem, where some types of symbols largely dominate the data while others are hardly represented in the dataset. In this paper, we propose methods to handle these two challenges. First, we propose an advanced bounding-box detection method for localising and recognising symbols in engineering diagrams. Our method is end-to-end with no user interaction. Thorough experiments on a large collection of diagrams from an industrial partner proved that our methods accurately recognise more than 94% of the symbols. Secondly, we present a method based on Deep Generative Adversarial Neural Network for handling class-imbalance. The proposed GAN model proved to be capable of learning from a small number of training examples. Experiment results showed that the proposed method greatly improved the classification of symbols in engineering drawings

    Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks.

    Get PDF
    Engineering drawings are common across different domains such as Oil & Gas, construction, mechanical and other domains. Automatic processing and analysis of these drawings is a challenging task. This is partly due to the complexity of these documents and also due to the lack of dataset availability in the public domain that can help push the research in this area. In this paper, we present a multiclass imbalanced dataset for the research community made of 2432 instances of engineering symbols. These symbols were extracted from a collection of complex engineering drawings known as Piping and Instrumentation Diagram (P&ID). By providing such dataset to the research community, we anticipate that this will help attract more attention to an important, yet overlooked industrial problem, and will also advance the research in such important and timely topics. We discuss the datasets characteristics in details, and we also show how Convolutional Neural Networks (CNNs) perform on such extremely imbalanced datasets. Finally, conclusions and future directions are discussed

    Learning from small and imbalanced dataset of images using generative adversarial neural networks.

    Get PDF
    The performance of deep learning models is unmatched by any other approach in supervised computer vision tasks such as image classification. However, training these models requires a lot of labeled data, which are not always available. Labelling a massive dataset is largely a manual and very demanding process. Thus, this problem has led to the development of techniques that bypass the need for labelling at scale. Despite this, existing techniques such as transfer learning, data augmentation and semi-supervised learning have not lived up to expectations. Some of these techniques do not account for other classification challenges, such as a class-imbalance problem. Thus, these techniques mostly underperform when compared with fully supervised approaches. In this thesis, we propose new methods to train a deep model on image classification with a limited number of labeled examples. This was achieved by extending state-of-the-art generative adversarial networks with multiple fake classes and network switchers. These new features enabled us to train a classifier using large unlabeled data, while generating class specific samples. The proposed model is label agnostic and is suitable for different classification scenarios, ranging from weakly supervised to fully supervised settings. This was used to address classification challenges with limited labeled data and a class-imbalance problem. Extensive experiments were carried out on different benchmark datasets. Firstly, the proposed approach was used to train a classification model and our findings indicated that the proposed approach achieved better classification accuracies, especially when the number of labeled samples is small. Secondly, the proposed approach was able to generate high-quality samples from class-imbalance datasets. The samples' quality is evident in improved classification performances when generated samples were used in neutralising class-imbalance. The results are thoroughly analyzed and, overall, our method showed superior performances over popular resampling technique and the AC-GAN model. Finally, we successfully applied the proposed approach as a new augmentation technique to two challenging real-world problems: face with attributes and legacy engineering drawings. The results obtained demonstrate that the proposed approach is effective even in extreme cases

    Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward.

    Get PDF
    The recent development in the areas of deep learning and deep convolutional neural networks has significantly progressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such as classifying and segmenting medical images and localising and recognising objects of interest have become much less challenging. This progress has the potential of accelerating research and deployment of multitudes of medical applications that utilise CV. However, in reality, there are limited practical examples being physically deployed into front-line health facilities. In this paper, we examine the current state of the art in CV as applied to the medical domain. We discuss the main challenges in CV and intelligent data-driven medical applications and suggest future directions to accelerate research, development, and deployment of CV applications in health practices. First, we critically review existing literature in the CV domain that addresses complex vision tasks, including: medical image classification; shape and object recognition from images; and medical segmentation. Second, we present an in-depth discussion of the various challenges that are considered barriers to accelerating research, development, and deployment of intelligent CV methods in real-life medical applications and hospitals. Finally, we conclude by discussing future directions

    Multi-Spectral Image Classification with Ultra-Lean Complex-Valued Models

    Full text link
    Multi-spectral imagery is invaluable for remote sensing due to different spectral signatures exhibited by materials that often appear identical in greyscale and RGB imagery. Paired with modern deep learning methods, this modality has great potential utility in a variety of remote sensing applications, such as humanitarian assistance and disaster recovery efforts. State-of-the-art deep learning methods have greatly benefited from large-scale annotations like in ImageNet, but existing MSI image datasets lack annotations at a similar scale. As an alternative to transfer learning on such data with few annotations, we apply complex-valued co-domain symmetric models to classify real-valued MSI images. Our experiments on 8-band xView data show that our ultra-lean model trained on xView from scratch without data augmentations can outperform ResNet with data augmentation and modified transfer learning on xView. Our work is the first to demonstrate the value of complex-valued deep learning on real-valued MSI data.Comment: NeuRIPS 2022 HADR workshop submissio

    Supersparse Linear Integer Models for Optimized Medical Scoring Systems

    Full text link
    Scoring systems are linear classification models that only require users to add, subtract and multiply a few small numbers in order to make a prediction. These models are in widespread use by the medical community, but are difficult to learn from data because they need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple operational constraints. We present a new method for creating data-driven scoring systems called a Supersparse Linear Integer Model (SLIM). SLIM scoring systems are built by solving an integer program that directly encodes measures of accuracy (the 0-1 loss) and sparsity (the â„“0\ell_0-seminorm) while restricting coefficients to coprime integers. SLIM can seamlessly incorporate a wide range of operational constraints related to accuracy and sparsity, and can produce highly tailored models without parameter tuning. We provide bounds on the testing and training accuracy of SLIM scoring systems, and present a new data reduction technique that can improve scalability by eliminating a portion of the training data beforehand. Our paper includes results from a collaboration with the Massachusetts General Hospital Sleep Laboratory, where SLIM was used to create a highly tailored scoring system for sleep apnea screeningComment: This version reflects our findings on SLIM as of January 2016 (arXiv:1306.5860 and arXiv:1405.4047 are out-of-date). The final published version of this articled is available at http://www.springerlink.co
    • …
    corecore