232 research outputs found

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    Bounds on the Game Transversal Number in Hypergraphs

    Get PDF
    Let H=(V,E)H = (V,E) be a hypergraph with vertex set VV and edge set EE of order \nH = |V| and size \mH = |E|. A transversal in HH is a subset of vertices in HH that has a nonempty intersection with every edge of HH. A vertex hits an edge if it belongs to that edge. The transversal game played on HH involves of two players, \emph{Edge-hitter} and \emph{Staller}, who take turns choosing a vertex from HH. Each vertex chosen must hit at least one edge not hit by the vertices previously chosen. The game ends when the set of vertices chosen becomes a transversal in HH. Edge-hitter wishes to minimize the number of vertices chosen in the game, while Staller wishes to maximize it. The \emph{game transversal number}, Ď„g(H)\tau_g(H), of HH is the number of vertices chosen when Edge-hitter starts the game and both players play optimally. We compare the game transversal number of a hypergraph with its transversal number, and also present an important fact concerning the monotonicity of Ď„g\tau_g, that we call the Transversal Continuation Principle. It is known that if HH is a hypergraph with all edges of size at least~22, and HH is not a 44-cycle, then \tau_g(H) \le \frac{4}{11}(\nH+\mH); and if HH is a (loopless) graph, then \tau_g(H) \le \frac{1}{3}(\nH + \mH + 1). We prove that if HH is a 33-uniform hypergraph, then \tau_g(H) \le \frac{5}{16}(\nH + \mH), and if HH is 44-uniform, then \tau_g(H) \le \frac{71}{252}(\nH + \mH).Comment: 23 pages
    • …
    corecore