163,997 research outputs found

    Colouring the Square of the Cartesian Product of Trees

    Full text link
    We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree

    Bounding right-arm rotation distances

    Full text link
    Rotation distance measures the difference in shape between binary trees of the same size by counting the minimum number of rotations needed to transform one tree to the other. We describe several types of rotation distance where restrictions are put on the locations where rotations are permitted, and provide upper bounds on distances between trees with a fixed number of nodes with respect to several families of these restrictions. These bounds are sharp in a certain asymptotic sense and are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.Comment: 30 pages, 11 figures. This revised version corrects some typos and has some clearer proofs of the results for the lower bounds and better figure

    Lower bounds for bootstrap percolation on Galton-Watson trees

    Get PDF
    Bootstrap percolation is a cellular automaton modelling the spread of an `infection' on a graph. In this note, we prove a family of lower bounds on the critical probability for rr-neighbour bootstrap percolation on Galton--Watson trees in terms of moments of the offspring distributions. With this result we confirm a conjecture of Bollob\'as, Gunderson, Holmgren, Janson and Przykucki. We also show that these bounds are best possible up to positive constants not depending on the offspring distribution.Comment: 7 page

    Optimization bounds from the branching dual

    Full text link
    We present a general method for obtaining strong bounds for discrete optimization problems that is based on a concept of branching duality. It can be applied when no useful integer programming model is available, and we illustrate this with the minimum bandwidth problem. The method strengthens a known bound for a given problem by formulating a dual problem whose feasible solutions are partial branching trees. It solves the dual problem with a “worst-bound” local search heuristic that explores neighboring partial trees. After proving some optimality properties of the heuristic, we show that it substantially improves known combinatorial bounds for the minimum bandwidth problem with a modest amount of computation. It also obtains significantly tighter bounds than depth-first and breadth-first branching, demonstrating that the dual perspective can lead to better branching strategies when the object is to find valid bounds.Accepted manuscrip

    On PAC-Bayesian Bounds for Random Forests

    Full text link
    Existing guarantees in terms of rigorous upper bounds on the generalization error for the original random forest algorithm, one of the most frequently used machine learning methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian approaches to derive such bounds. The bounds do not require additional hold-out data, because the out-of-bag samples from the bagging in the training process can be exploited. A random forest predicts by taking a majority vote of an ensemble of decision trees. The first approach is to bound the error of the vote by twice the error of the corresponding Gibbs classifier (classifying with a single member of the ensemble selected at random). However, this approach does not take into account the effect of averaging out of errors of individual classifiers when taking the majority vote. This effect provides a significant boost in performance when the errors are independent or negatively correlated, but when the correlations are strong the advantage from taking the majority vote is small. The second approach based on PAC-Bayesian C-bounds takes dependencies between ensemble members into account, but it requires estimating correlations between the errors of the individual classifiers. When the correlations are high or the estimation is poor, the bounds degrade. In our experiments, we compute generalization bounds for random forests on various benchmark data sets. Because the individual decision trees already perform well, their predictions are highly correlated and the C-bounds do not lead to satisfactory results. For the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller training set gave better performance guarantees, but worse performance in most experiments
    corecore