633 research outputs found

    Sequential decoding on intersymbol interference channels with application to magnetic recording

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 1990.Thesis (Master's) -- Bilkent University, 1990.Includes bibliographical references leaves 27-28In this work we treat sequential decoding in the problem of sequence estimation on intersymbol interference ( ISI ) channels. We consider the magnetic recording channel as the particular ISI channel and investigate the coding gains that can be achieved with sequential decoding for different information densities. Since the cutoff rate determines this quantity , we find lower bounds to the cutoff rate. The symmetric cutoff rate is computed as a theoretical lower bound and practical lower bounds are found through simulations. Since the optimum decoding metric is impractical, a sub-optimum metric has been used in the simulations. The results show that this metric can not achieve the cutoff rate in general, but still its performance is not far from that of the optimum metric. We compare the results to those of Immink[9] and see that one can achieve positive coding gains at information densities of practical interest where other practical codes used in magnetic recording show coding loss.Alanyalı, MuratM.S

    Constrained capacities for faster-than-Nyquist signaling

    Get PDF
    This paper deals with capacity computations of faster-than-Nyquist (FTN) signaling. It shows that the capacity of FTN is higher than the orthogonal pulse linear modulation capacity for all pulse shapes except the sinc. FTN signals can in fact achieve the ultimate capacity for the signal power spectral density (PSD). The paper lower and upper bounds the FTN capacity under the constraint of finite input alphabet. It is often higher than the capacity for comparable orthogonal pulse systems; sometimes it is superior to all forms of orthogonal signaling with the same PSD

    Implementing and characterizing precise multi-qubit measurements

    Full text link
    There are two general requirements to harness the computational power of quantum mechanics: the ability to manipulate the evolution of an isolated system and the ability to faithfully extract information from it. Quantum error correction and simulation often make a more exacting demand: the ability to perform non-destructive measurements of specific correlations within that system. We realize such measurements by employing a protocol adapted from [S. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604 (2013)], enabling real-time selection of arbitrary register-wide Pauli operators. Our implementation consists of a simple circuit quantum electrodynamics (cQED) module of four highly-coherent 3D transmon qubits, collectively coupled to a high-Q superconducting microwave cavity. As a demonstration, we enact all seven nontrivial subset-parity measurements on our three-qubit register. For each we fully characterize the realized measurement by analyzing the detector (observable operators) via quantum detector tomography and by analyzing the quantum back-action via conditioned process tomography. No single quantity completely encapsulates the performance of a measurement, and standard figures of merit have not yet emerged. Accordingly, we consider several new fidelity measures for both the detector and the complete measurement process. We measure all of these quantities and report high fidelities, indicating that we are measuring the desired quantities precisely and that the measurements are highly non-demolition. We further show that both results are improved significantly by an additional error-heralding measurement. The analyses presented here form a useful basis for the future characterization and validation of quantum measurements, anticipating the demands of emerging quantum technologies.Comment: 10 pages, 5 figures, plus supplemen

    Invited Article: Visualisation of extreme value events in optical communications

    Get PDF
    Fluctuations of a temporal signal propagating along long-haul transoceanic scale fiber links can be visualised in the spatio-temporal domain drawing visual analogy with ocean waves. Substantial overlapping of information symbols or use of multifrequency signals leads to strong statistical deviations of local peak power from an average signal power level. We consider long-haul optical communication systems from this unusual angle, treating them as physical systems with a huge number of random statistical events, including extreme value fluctuations that potentially might affect the quality of data transmission. We apply the well-established concepts of adaptive wavefront shaping used in imaging through turbid medium to detect the detrimental phase modulated sequences in optical communications that can cause extreme power outages (rare optical waves of ultra-high amplitude) during propagation down the ultra-long fiber line. We illustrate the concept by a theoretical analysis of rare events of high-intensity fluctuations—optical freak waves, taking as an example an increasingly popular optical frequency division multiplexing data format where the problem of high peak to average power ratio is the most acute. We also show how such short living extreme value spikes in the optical data streams are affected by nonlinearity and demonstrate the negative impact of such events on the system performance

    Optimal entanglement-assisted electromagnetic sensing and communication in the presence of noise

    Full text link
    High time-bandwidth product signal and idler pulses comprised of independent identically distributed two-mode squeezed vacuum (TMSV) states are readily produced by spontaneous parametric downconversion. These pulses are virtually unique among entangled states in that they offer quantum performance advantages -- over their best classical-state competitors -- in scenarios whose loss and noise break their initial entanglement. Broadband TMSV states' quantum advantage derives from its signal and idler having a strongly nonclassical phase-sensitive cross correlation, which leads to information bearing signatures in lossy, noisy scenarios stronger than what can be obtained from classical-state systems of the same transmitted energy. Previous broadband TMSV receiver architectures focused on converting phase-sensitive cross correlation into phase-insensitive cross correlation, which can be measured in second-order interference. In general, however, these receivers fail to deliver broadband TMSV states' full quantum advantage, even if they are implemented with ideal equipment. This paper introduces the correlation-to-displacement receiver -- a new architecture comprised of a correlation-to-displacement converter, a programmable mode selector, and a coherent-state information extractor -- that can be configured to achieve quantum optimal performance in known sensing and communication protocols for which broadband TMSV provides quantum advantage that is robust against entanglement-breaking loss and noise.Comment: 14+17 pages, 12+9 figures. A preliminary version of the manuscript can be found in arXiv:2207.0660

    Performance Analysis of Physical Layer Network Coding.

    Full text link
    Network coding has emerged as an innovative approach to network operation that can significantly enhance network throughput. The key goal of this thesis is to understand fundamental aspects of physical layer network coding, where network coding is performed at the physical layer. As a simple but typical example of network coding, we consider a network scenario where two users transmit messages through a common channel and the receiver reconstructs the exclusive-or of the two messages. For this channel, we investigate the error exponent which can provide guidelines for the design of e±cient communication systems using network coding. From a practical point of view, we examine the performance of channel codes for this problem. Assuming that each user transmits data using the same low-density parity-check (LDPC) code and each link is an additive white Gaussian noise channel, we evaluate the noise thresholds of LDPC codes via density evolution methods. Other important issues considered in this thesis are related to transmission over fading channels. First, we study the performance of LDPC codes over non-ergodic fading channels. In non-ergodic channels, reliable communication at a constant rate is impossible. Assuming that the fading coe±cient is randomly chosen but fixed during transmission of an LDPC codeword, we derive the outage probability of LDPC-coded systems. We also propose an accurate frequency domain channel estimator based on the Slepian basis expansion. The proposed scheme operates with high accuracy requiring only the knowledge of the maximum delay spread of the channel. Finally, we investigate the capacity achieving input of non-coherent Rayleigh fading channels taking into account power constraints imposed by a non-linear power amplifier. We show that the optimal input is discrete with finite support which indicates that capacity can be computed using finite dimensional optimization.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64791/1/jinhokim_1.pd

    Digital communication over fixed time-contin- uous channels with memory- with special application to telephone channels

    Get PDF
    Digital communication over fixed time- continuous channels with memor

    Neutron Star Population Dynamics.I: Millisecond Pulsars

    Full text link
    We study the field millisecond pulsar (MSP) population to infer its intrinsic distribution in spin period and luminosity and to determine its spatial distribution within the Galaxy. Our likelihood analysis on data from extant surveys (22 pulsars with periods <20 ms) accounts for important selection effects. We infer a minimum period cutoff P(min) > 0.65 ms (99% confidence), a period distribution proportional to P^{-2.0 +- 0.33} and a pseudo-luminosity distribution proportional to L_p^{-2.0 +- 0.2} (where L_p = flux density times distance^2, for L_p >= 1.1 mJy kpc^2). We find a vertical scale height 0.65{+0.16,-0.12} kpc. We use our results to estimate the total number and birthrate of MSPs in the disk of the Galaxy. We limit the density contribution of a diffuse halo-like component to <1% of the midplane value. The MSP velocity dispersion is smaller that that of young, long-period pulsars by about a factor of 5. Our best estimate of the 1D velocity kick that is unique to MSP evolution is approximately 40 km s^-1. We discuss the evolutionary relationship of MSPs and low-mass X-ray binaries and prospects for future searches for MSPs.Comment: 53 pages, 12 Postscript figures, LaTeX/AASTeX (aasp4), to appear Ap. J. 482, 1997 June 2
    corecore