1,104 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Diversity-Multiplexing Tradeoffs in MIMO Relay Channels

    Full text link
    A multi-hop relay channel with multiple antenna terminals in a quasi-static slow fading environment is considered. For both full-duplex and half-duplex relays the fundamental diversity-multiplexing tradeoff (DMT) is analyzed. It is shown that, while decode-and-forward (DF) relaying achieves the optimal DMT in the full-duplex relay scenario, the dynamic decode-and-forward (DDF) protocol is needed to achieve the optimal DMT if the relay is constrained to half-duplex operation. For the latter case, static protocols are considered as well, and the corresponding achievable DMT performance is characterized.Comment: To appear at IEEE Global Communications Conf. (Globecom), New Orleans, LA, Nov. 200

    Outage Capacity of Incremental Relaying at Low Signal-to-Noise Ratios

    Full text link
    We present the \epsilon-outage capacity of incremental relaying at low signal-to-noise ratios (SNR) in a wireless cooperative network with slow Rayleigh fading channels. The relay performs decode-and-forward and repetition coding is employed in the network, which is optimal in the low SNR regime. We derive an expression on the optimal relay location that maximizes the \epsilon-outage capacity. It is shown that this location is independent of the outage probability and SNR but only depends on the channel conditions represented by a path-loss factor. We compare our results to the \epsilon-outage capacity of the cut-set bound and demonstrate that the ratio between the \epsilon-outage capacity of incremental relaying and the cut-set bound lies within 1/\sqrt{2} and 1. Furthermore, we derive lower bounds on the \epsilon-outage capacity for the case of K relays.Comment: 5 pages, 4 figures, to be presented at VTC Fall 2009 in Anchorage, Alask
    • …
    corecore