460 research outputs found

    Modularity of regular and treelike graphs

    Full text link
    Clustering algorithms for large networks typically use modularity values to test which partitions of the vertex set better represent structure in the data. The modularity of a graph is the maximum modularity of a partition. We consider the modularity of two kinds of graphs. For rr-regular graphs with a given number of vertices, we investigate the minimum possible modularity, the typical modularity, and the maximum possible modularity. In particular, we see that for random cubic graphs the modularity is usually in the interval (0.666,0.804)(0.666, 0.804), and for random rr-regular graphs with large rr it usually is of order 1/r1/\sqrt{r}. These results help to establish baselines for statistical tests on regular graphs. The modularity of cycles and low degree trees is known to be close to 1: we extend these results to `treelike' graphs, where the product of treewidth and maximum degree is much less than the number of edges. This yields for example the (deterministic) lower bound 0.6660.666 mentioned above on the modularity of random cubic graphs.Comment: 25 page

    Factors of IID on Trees

    Full text link
    Classical ergodic theory for integer-group actions uses entropy as a complete invariant for isomorphism of IID (independent, identically distributed) processes (a.k.a. product measures). This theory holds for amenable groups as well. Despite recent spectacular progress of Bowen, the situation for non-amenable groups, including free groups, is still largely mysterious. We present some illustrative results and open questions on free groups, which are particularly interesting in combinatorics, statistical physics, and probability. Our results include bounds on minimum and maximum bisection for random cubic graphs that improve on all past bounds.Comment: 18 pages, 1 figur

    On Vertex Bisection Width of Random dd-Regular Graphs

    Full text link
    Vertex bisection is a graph partitioning problem in which the aim is to find a partition into two equal parts that minimizes the number of vertices in one partition set that have a neighbor in the other set. We are interested in giving upper bounds on the vertex bisection width of random dd-regular graphs for constant values of dd. Our approach is based on analyzing a greedy algorithm by using the Differential Equations Method. In this way, we obtain the first known upper bounds for the vertex bisection width in random regular graphs. The results are compared with experimental ones and with lower bounds obtained by Kolesnik and Wormald, (Lower Bounds for the Isoperimetric Numbers of Random Regular Graphs, SIAM J. on Disc. Math. 28(1), 553-575, 2014).Comment: 31 pages, 2 figure

    Maximum edge-cuts in cubic graphs with large girth and in random cubic graphs

    Full text link
    We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts of G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at most 1.127752. The lower bound on the size of maximum edge-cut also applies to random cubic graphs. Specifically, a random n-vertex cubic graph a.a.s. contains an edge cut of size 1.33008n

    Modularity of tree-like and random regular graphs

    Get PDF

    On the minimum bisection of random 3−3-regular graphs

    Full text link
    In this paper we give new asymptotically almost sure lower and upper bounds on the bisection width of random 3−3-regular graphs. The main contribution is a new lower bound on the bisection width of 0.103295n0.103295n, based on a first moment method together with a structural decomposition of the graph, thereby improving a 27 year old result of Kostochka and Melnikov. We also give a complementary upper bound of 0.139822n0.139822n, combining known spectral ideas with original combinatorial insights. Developping further this approach, with the help of Monte Carlo simulations, we obtain a non-rigorous upper bound of 0.131366n0.131366n.Comment: 48 pages, 20 figure
    • …
    corecore