2,778 research outputs found

    Nombre chromatique fractionnaire, degré maximum et maille

    Get PDF
    We prove new lower bounds on the independence ratio of graphs of maximum degree ∆ ∈ {3,4,5} and girth g ∈ {6,…,12}, notably 1/3 when (∆,g)=(4,10) and 2/7 when (∆,g)=(5,8). We establish a general upper bound on the fractional chromatic number of triangle-free graphs, which implies that deduced from the fractional version of Reed's bound for triangle-free graphs and improves it as soon as ∆ ≥ 17, matching the best asymptotic upper bound known for off-diagonal Ramsey numbers. In particular, the fractional chromatic number of a triangle-free graph of maximum degree ∆ is less than 9.916 if ∆=17, less than 22.17 if ∆=50 and less than 249.06 if ∆=1000. Focusing on smaller values of ∆, we also demonstrate that every graph of girth at least 7 and maximum degree ∆ has fractional chromatic number at most min (2∆ + 2^{k-3}+k)/k pour k ∈ ℕ. In particular, the fractional chromatic number of a graph of girth 7 and maximum degree ∆ is at most (2∆+9)/5 when ∆ ∈ [3,8], at most (∆+7)/3 when ∆ ∈  [8,20], at most (2∆+23)/7 when ∆ ∈ [20,48], and at most ∆/4+5 when ∆ ∈ [48,112]

    Eigenvalue interlacing and weight parameters of graphs

    Get PDF
    Eigenvalue interlacing is a versatile technique for deriving results in algebraic combinatorics. In particular, it has been successfully used for proving a number of results about the relation between the (adjacency matrix or Laplacian) spectrum of a graph and some of its properties. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc., have been obtained. For each parameter of a graph involving the cardinality of some vertex sets, we can define its corresponding weight parameter by giving some "weights" (that is, the entries of the positive eigenvector) to the vertices and replacing cardinalities by square norms. The key point is that such weights "regularize" the graph, and hence allow us to define a kind of regular partition, called "pseudo-regular," intended for general graphs. Here we show how to use interlacing for proving results about some weight parameters and pseudo-regular partitions of a graph. For instance, generalizing a well-known result of Lov\'asz, it is shown that the weight Shannon capacity Θ∗\Theta^* of a connected graph \G, with nn vertices and (adjacency matrix) eigenvalues λ1>λ2≥.˙.≥λn\lambda_1>\lambda_2\ge\...\ge \lambda_n, satisfies \Theta\le \Theta^* \le \frac{\|\vecnu\|^2}{1-\frac{\lambda_1}{\lambda_n}} where Θ\Theta is the (standard) Shannon capacity and \vecnu is the positive eigenvector normalized to have smallest entry 1. In the special case of regular graphs, the results obtained have some interesting corollaries, such as an upper bound for some of the multiplicities of the eigenvalues of a distance-regular graph. Finally, some results involving the Laplacian spectrum are derived. spectrum are derived

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester

    Towards on-line Ohba's conjecture

    Full text link
    The on-line choice number of a graph is a variation of the choice number defined through a two person game. It is at least as large as the choice number for all graphs and is strictly larger for some graphs. In particular, there are graphs GG with ∣V(G)∣=2χ(G)+1|V(G)| = 2 \chi(G)+1 whose on-line choice numbers are larger than their chromatic numbers, in contrast to a recently confirmed conjecture of Ohba that every graph GG with ∣V(G)∣≤2χ(G)+1|V(G)| \le 2 \chi(G)+1 has its choice number equal its chromatic number. Nevertheless, an on-line version of Ohba conjecture was proposed in [P. Huang, T. Wong and X. Zhu, Application of polynomial method to on-line colouring of graphs, European J. Combin., 2011]: Every graph GG with ∣V(G)∣≤2χ(G)|V(G)| \le 2 \chi(G) has its on-line choice number equal its chromatic number. This paper confirms the on-line version of Ohba conjecture for graphs GG with independence number at most 3. We also study list colouring of complete multipartite graphs K3⋆kK_{3\star k} with all parts of size 3. We prove that the on-line choice number of K3⋆kK_{3 \star k} is at most 3/2k3/2k, and present an alternate proof of Kierstead's result that its choice number is ⌈(4k−1)/3⌉\lceil (4k-1)/3 \rceil. For general graphs GG, we prove that if ∣V(G)∣≤χ(G)+χ(G)|V(G)| \le \chi(G)+\sqrt{\chi(G)} then its on-line choice number equals chromatic number.Comment: new abstract and introductio

    Some results on chromatic number as a function of triangle count

    Full text link
    A variety of powerful extremal results have been shown for the chromatic number of triangle-free graphs. Three noteworthy bounds are in terms of the number of vertices, edges, and maximum degree given by Poljak \& Tuza (1994), and Johansson. There have been comparatively fewer works extending these types of bounds to graphs with a small number of triangles. One noteworthy exception is a result of Alon et. al (1999) bounding the chromatic number for graphs with low degree and few triangles per vertex; this bound is nearly the same as for triangle-free graphs. This type of parametrization is much less rigid, and has appeared in dozens of combinatorial constructions. In this paper, we show a similar type of result for χ(G)\chi(G) as a function of the number of vertices nn, the number of edges mm, as well as the triangle count (both local and global measures). Our results smoothly interpolate between the generic bounds true for all graphs and bounds for triangle-free graphs. Our results are tight for most of these cases; we show how an open problem regarding fractional chromatic number and degeneracy in triangle-free graphs can resolve the small remaining gap in our bounds

    Local Graph Coloring and Index Coding

    Full text link
    We present a novel upper bound for the optimal index coding rate. Our bound uses a graph theoretic quantity called the local chromatic number. We show how a good local coloring can be used to create a good index code. The local coloring is used as an alignment guide to assign index coding vectors from a general position MDS code. We further show that a natural LP relaxation yields an even stronger index code. Our bounds provably outperform the state of the art on index coding but at most by a constant factor.Comment: 14 Pages, 3 Figures; A conference version submitted to ISIT 2013; typos correcte
    • …
    corecore