10,192 research outputs found

    Enumerating Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite.Comment: 12 pages; 10 figures; 10 references. Revision of version in Proceedings of the Japan Conference on Discrete and Computational Geometry, Tokyo, Nov. 2000, pp. 9-12. See also cs.CG/000701

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    Improved Lower Bounds on the Compatibility of Multi-State Characters

    Full text link
    We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state characters: There exists a function f(r)f(r) such that, for any set CC of rr-state characters, CC is compatible if and only if every subset of f(r)f(r) characters of CC is compatible. We show that for every r≥2r \ge 2, there exists an incompatible set CC of ⌊r2⌋⋅⌈r2⌉+1\lfloor\frac{r}{2}\rfloor\cdot\lceil\frac{r}{2}\rceil + 1 rr-state characters such that every proper subset of CC is compatible. Thus, f(r)≥⌊r2⌋⋅⌈r2⌉+1f(r) \ge \lfloor\frac{r}{2}\rfloor\cdot\lceil\frac{r}{2}\rceil + 1 for every r≥2r \ge 2. This improves the previous lower bound of f(r)≥rf(r) \ge r given by Meacham (1983), and generalizes the construction showing that f(4)≥5f(4) \ge 5 given by Habib and To (2011). We prove our result via a result on quartet compatibility that may be of independent interest: For every integer n≥4n \ge 4, there exists an incompatible set QQ of ⌊n−22⌋⋅⌈n−22⌉+1\lfloor\frac{n-2}{2}\rfloor\cdot\lceil\frac{n-2}{2}\rceil + 1 quartets over nn labels such that every proper subset of QQ is compatible. We contrast this with a result on the compatibility of triplets: For every n≥3n \ge 3, if RR is an incompatible set of more than n−1n-1 triplets over nn labels, then some proper subset of RR is incompatible. We show this upper bound is tight by exhibiting, for every n≥3n \ge 3, a set of n−1n-1 triplets over nn taxa such that RR is incompatible, but every proper subset of RR is compatible

    Submodular relaxation for inference in Markov random fields

    Full text link
    In this paper we address the problem of finding the most probable state of a discrete Markov random field (MRF), also known as the MRF energy minimization problem. The task is known to be NP-hard in general and its practical importance motivates numerous approximate algorithms. We propose a submodular relaxation approach (SMR) based on a Lagrangian relaxation of the initial problem. Unlike the dual decomposition approach of Komodakis et al., 2011 SMR does not decompose the graph structure of the initial problem but constructs a submodular energy that is minimized within the Lagrangian relaxation. Our approach is applicable to both pairwise and high-order MRFs and allows to take into account global potentials of certain types. We study theoretical properties of the proposed approach and evaluate it experimentally.Comment: This paper is accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Counting and Enumerating Crossing-free Geometric Graphs

    Full text link
    We describe a framework for counting and enumerating various types of crossing-free geometric graphs on a planar point set. The framework generalizes ideas of Alvarez and Seidel, who used them to count triangulations in time O(2nn2)O(2^nn^2) where nn is the number of points. The main idea is to reduce the problem of counting geometric graphs to counting source-sink paths in a directed acyclic graph. The following new results will emerge. The number of all crossing-free geometric graphs can be computed in time O(cnn4)O(c^nn^4) for some c<2.83929c < 2.83929. The number of crossing-free convex partitions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free perfect matchings can be computed in time O(2nn4)O(2^nn^4). The number of convex subdivisions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free spanning trees can be computed in time O(cnn4)O(c^nn^4) for some c<7.04313c < 7.04313. The number of crossing-free spanning cycles can be computed in time O(cnn4)O(c^nn^4) for some c<5.61804c < 5.61804. With the same bounds on the running time we can construct data structures which allow fast enumeration of the respective classes. For example, after O(2nn4)O(2^nn^4) time of preprocessing we can enumerate the set of all crossing-free perfect matchings using polynomial time per enumerated object. For crossing-free perfect matchings and convex partitions we further obtain enumeration algorithms where the time delay for each (in particular, the first) output is bounded by a polynomial in nn. All described algorithms are comparatively simple, both in terms of their analysis and implementation
    • …
    corecore