4,033 research outputs found

    Scrambling speed of random quantum circuits

    Full text link
    Random transformations are typically good at "scrambling" information. Specifically, in the quantum setting, scrambling usually refers to the process of mapping most initial pure product states under a unitary transformation to states which are macroscopically entangled, in the sense of being close to completely mixed on most subsystems containing a fraction fn of all n particles for some constant f. While the term scrambling is used in the context of the black hole information paradox, scrambling is related to problems involving decoupling in general, and to the question of how large isolated many-body systems reach local thermal equilibrium under their own unitary dynamics. Here, we study the speed at which various notions of scrambling/decoupling occur in a simplified but natural model of random two-particle interactions: random quantum circuits. For a circuit representing the dynamics generated by a local Hamiltonian, the depth of the circuit corresponds to time. Thus, we consider the depth of these circuits and we are typically interested in what can be done in a depth that is sublinear or even logarithmic in the size of the system. We resolve an outstanding conjecture raised in the context of the black hole information paradox with respect to the depth at which a typical quantum circuit generates an entanglement assisted encoding against the erasure channel. In addition, we prove that typical quantum circuits of poly(log n) depth satisfy a stronger notion of scrambling and can be used to encode alpha n qubits into n qubits so that up to beta n errors can be corrected, for some constants alpha, beta > 0.Comment: 24 pages, 2 figures. Superseded by http://arxiv.org/abs/1307.063

    Introduction to Quantum Error Correction

    Get PDF
    In this introduction we motivate and explain the ``decoding'' and ``subsystems'' view of quantum error correction. We explain how quantum noise in QIP can be described and classified, and summarize the requirements that need to be satisfied for fault tolerance. Considering the capabilities of currently available quantum technology, the requirements appear daunting. But the idea of ``subsystems'' shows that these requirements can be met in many different, and often unexpected ways.Comment: 44 pages, to appear in LA Science. Hyperlinked PDF at http://www.c3.lanl.gov/~knill/qip/ecprhtml/ecprpdf.pdf, HTML at http://www.c3.lanl.gov/~knill/qip/ecprhtm

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Convolutional Codes in Rank Metric with Application to Random Network Coding

    Full text link
    Random network coding recently attracts attention as a technique to disseminate information in a network. This paper considers a non-coherent multi-shot network, where the unknown and time-variant network is used several times. In order to create dependencies between the different shots, particular convolutional codes in rank metric are used. These codes are so-called (partial) unit memory ((P)UM) codes, i.e., convolutional codes with memory one. First, distance measures for convolutional codes in rank metric are shown and two constructions of (P)UM codes in rank metric based on the generator matrices of maximum rank distance codes are presented. Second, an efficient error-erasure decoding algorithm for these codes is presented. Its guaranteed decoding radius is derived and its complexity is bounded. Finally, it is shown how to apply these codes for error correction in random linear and affine network coding.Comment: presented in part at Netcod 2012, submitted to IEEE Transactions on Information Theor

    Coding for channels with partially localized errors

    Get PDF
    "April 1990."Includes bibliographical references (p. 9).Research supported by an A.P. Sloan Foundation Grant. 88-10-1by L.A. Bassalygo, S.I. Gelfand, M.S. Pinsker

    Sparse Quantum Codes from Quantum Circuits

    Get PDF
    Sparse quantum codes are analogous to LDPC codes in that their check operators require examining only a constant number of qubits. In contrast to LDPC codes, good sparse quantum codes are not known, and even to encode a single qubit, the best known distance is O(√n log(n)), due to Freedman, Meyer and Luo. We construct a new family of sparse quantum subsystem codes with minimum distance n[superscript 1 - ε] for ε = O(1/√log n). A variant of these codes exists in D spatial dimensions and has d = n[superscript 1 - ε - 1/D], nearly saturating a bound due to Bravyi and Terhal. Our construction is based on a new general method for turning quantum circuits into sparse quantum subsystem codes. Using this prescription, we can map an arbitrary stabilizer code into a new subsystem code with the same distance and number of encoded qubits but where all the generators have constant weight, at the cost of adding some ancilla qubits. With an additional overhead of ancilla qubits, the new code can also be made spatially local.National Science Foundation (U.S.) (Grant CCF-1111382)United States. Army Research Office (Contract W911NF-12-1-0486
    • …
    corecore