26 research outputs found

    SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS

    Get PDF
    As the technologies scaling down, more transistors can be fabricated into the same area, which enables the integration of many components into the same substrate, referred to as system-on-chip (SoC). The components on SoC are connected by on-chip global interconnects. It has been shown in the recent International Technology Roadmap of Semiconductors (ITRS) that when scaling down, gate delay decreases, but global interconnect delay increases due to crosstalk. The interconnect delay has become a bottleneck of the overall system performance. Many techniques have been proposed to address crosstalk, such as shielding, buffer insertion, and crosstalk avoidance codes (CACs). The CAC is a promising technique due to its good crosstalk reduction, less power consumption and lower area. In this dissertation, I will present analytical delay models for on-chip interconnects with improved accuracy. This enables us to have a more accurate control of delays for transition patterns and lead to a more efficient CAC, whose worst-case delay is 30-40% smaller than the best of previously proposed CACs. As the clock frequency approaches multi-gigahertz, the parasitic inductance of on-chip interconnects has become significant and its detrimental effects, including increased delay, voltage overshoots and undershoots, and increased crosstalk noise, cannot be ignored. We introduce new CACs to address both capacitive and inductive couplings simultaneously.Quantum computers are more powerful in solving some NP problems than the classical computers. However, quantum computers suffer greatly from unwanted interactions with environment. Quantum error correction codes (QECCs) are needed to protect quantum information against noise and decoherence. Given their good error-correcting performance, it is desirable to adapt existing iterative decoding algorithms of LDPC codes to obtain LDPC-based QECCs. Several QECCs based on nonbinary LDPC codes have been proposed with a much better error-correcting performance than existing quantum codes over a qubit channel. In this dissertation, I will present stabilizer codes based on nonbinary QC-LDPC codes for qubit channels. The results will confirm the observation that QECCs based on nonbinary LDPC codes appear to achieve better performance than QECCs based on binary LDPC codes.As the technologies scaling down further to nanoscale, CMOS devices suffer greatly from the quantum mechanical effects. Some emerging nano devices, such as resonant tunneling diodes (RTDs), quantum cellular automata (QCA), and single electron transistors (SETs), have no such issues and are promising candidates to replace the traditional CMOS devices. Threshold gate, which can implement complex Boolean functions within a single gate, can be easily realized with these devices. Several applications dealing with real-valued signals have already been realized using nanotechnology based threshold gates. Unfortunately, the applications using finite fields, such as error correcting coding and cryptography, have not been realized using nanotechnology. The main obstacle is that they require a great number of exclusive-ORs (XORs), which cannot be realized in a single threshold gate. Besides, the fan-in of a threshold gate in RTD nanotechnology needs to be bounded for both reliability and performance purpose. In this dissertation, I will present a majority-class threshold architecture of XORs with bounded fan-in, and compare it with a Boolean-class architecture. I will show an application of the proposed XORs for the finite field multiplications. The analysis results will show that the majority class outperforms the Boolean class architectures in terms of hardware complexity and latency. I will also introduce a sort-and-search algorithm, which can be used for implementations of any symmetric functions. Since XOR is a special symmetric function, it can be implemented via the sort-and-search algorithm. To leverage the power of multi-input threshold functions, I generalize the previously proposed sort-and-search algorithm from a fan-in of two to arbitrary fan-ins, and propose an architecture of multi-input XORs with bounded fan-ins

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed
    corecore