38,436 research outputs found

    On the size of binary decision diagrams representing Boolean functions

    Get PDF
    AbstractWe consider the size of the representation of Boolean functions by several classes of binary decision diagrams (BDDs) (also called branching programs), namely the classes of arbitrary BDDs of real time BDD (RBDD) (i.e. BDDs where each computation path is limited to the number of variables), of free BDDs (FBDDs) (also called read-once-only branching programs), of ordered BDDs (OBDDS) i.e. FBDDs where variables are tested in the same order along all paths), and binary decision trees (BDTs).Using well-known techniques, we first establish asymptotically sharp bounds as a function of n on the minimum size of arbitrary BDDs representing almost all Boolean functions of n variables and provide asymptotic lower and upper bounds, differing only by a factor of two, on the minimum size OBDDs representing almost all Boolean functions of n variables.We then, using a method to obtain exponential lower bounds on complexity of computation of Boolean functions by RBDD, FBDD and OBDD that originated in (Breitbart, 1968), present the highest such bounds to date and also present improved bounds on the relative economy of description of particular Boolean functions by the above classes of BDDs. For each nontrivial pair of BDD classes considered, we exhibit infinite families of Boolean functions representable much more concisely by BDDs in one class than by BDDs in the other

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201

    An n log n Algorithm for Online BDD Refinement

    Get PDF
    Binary Decision Diagrams are in widespread use in verification systemsfor the canonical representation of Boolean functions. A BDD representinga function phi : B^nu -> N can easily be reduced to its canonical form inlinear time.In this paper, we consider a natural online BDD refinement problemand show that it can be solved in O(n log n) if n bounds the size of theBDD and the total size of update operations.We argue that BDDs in an algebraic framework should be understoodas minimal fixed points superimposed on maximal fixed points. We proposea technique of controlled growth of equivalence classes to make theminimal fixed point calculations be carried out efficiently. Our algorithmis based on a new understanding of the interplay between the splittingand growing of classes of nodes.We apply our algorithm to show that automata with exponentiallylarge, but implicitly represented alphabets, can be minimized in timeO(n log n), where n is the total number of BDD nodes representing theautomaton

    Chain Reduction for Binary and Zero-Suppressed Decision Diagrams

    Full text link
    Chain reduction enables reduced ordered binary decision diagrams (BDDs) and zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the others' ability to symbolically represent Boolean functions in compact form. For any Boolean function, its chain-reduced ZDD (CZDD) representation will be no larger than its ZDD representation, and at most twice the size of its BDD representation. The chain-reduced BDD (CBDD) of a function will be no larger than its BDD representation, and at most three times the size of its CZDD representation. Extensions to the standard algorithms for operating on BDDs and ZDDs enable them to operate on the chain-reduced versions. Experimental evaluations on representative benchmarks for encoding word lists, solving combinatorial problems, and operating on digital circuits indicate that chain reduction can provide significant benefits in terms of both memory and execution time

    Improving Optimization Bounds using Machine Learning: Decision Diagrams meet Deep Reinforcement Learning

    Full text link
    Finding tight bounds on the optimal solution is a critical element of practical solution methods for discrete optimization problems. In the last decade, decision diagrams (DDs) have brought a new perspective on obtaining upper and lower bounds that can be significantly better than classical bounding mechanisms, such as linear relaxations. It is well known that the quality of the bounds achieved through this flexible bounding method is highly reliant on the ordering of variables chosen for building the diagram, and finding an ordering that optimizes standard metrics is an NP-hard problem. In this paper, we propose an innovative and generic approach based on deep reinforcement learning for obtaining an ordering for tightening the bounds obtained with relaxed and restricted DDs. We apply the approach to both the Maximum Independent Set Problem and the Maximum Cut Problem. Experimental results on synthetic instances show that the deep reinforcement learning approach, by achieving tighter objective function bounds, generally outperforms ordering methods commonly used in the literature when the distribution of instances is known. To the best knowledge of the authors, this is the first paper to apply machine learning to directly improve relaxation bounds obtained by general-purpose bounding mechanisms for combinatorial optimization problems.Comment: Accepted and presented at AAAI'1
    corecore