186 research outputs found

    Secure Massive MIMO Communication with Low-resolution DACs

    Full text link
    In this paper, we investigate secure transmission in a massive multiple-input multiple-output (MIMO) system adopting low-resolution digital-to-analog converters (DACs). Artificial noise (AN) is deliberately transmitted simultaneously with the confidential signals to degrade the eavesdropper's channel quality. By applying the Bussgang theorem, a DAC quantization model is developed which facilitates the analysis of the asymptotic achievable secrecy rate. Interestingly, for a fixed power allocation factor Ï•\phi, low-resolution DACs typically result in a secrecy rate loss, but in certain cases they provide superior performance, e.g., at low signal-to-noise ratio (SNR). Specifically, we derive a closed-form SNR threshold which determines whether low-resolution or high-resolution DACs are preferable for improving the secrecy rate. Furthermore, a closed-form expression for the optimal Ï•\phi is derived. With AN generated in the null-space of the user channel and the optimal Ï•\phi, low-resolution DACs inevitably cause secrecy rate loss. On the other hand, for random AN with the optimal Ï•\phi, the secrecy rate is hardly affected by the DAC resolution because the negative impact of the quantization noise can be compensated for by reducing the AN power. All the derived analytical results are verified by numerical simulations.Comment: 14 pages, 10 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    • …
    corecore