3,008 research outputs found

    Vertex arboricity of triangle-free graphs

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2016The vertex arboricity of a graph is the minimum number of colors needed to color the vertices so that the subgraph induced by each color class is a forest. In other words, the vertex arboricity of a graph is the fewest number of colors required in order to color a graph such that every cycle has at least two colors. Although not standard, we will refer to vertex arboricity simply as arboricity. In this paper, we discuss properties of chromatic number and k-defective chromatic number and how those properties relate to the arboricity of trianglefree graphs. In particular, we find bounds on the minimum order of a graph having arboricity three. Equivalently, we consider the largest possible vertex arboricity of triangle-free graphs of fixed order

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even
    corecore