40,694 research outputs found

    On Approximating the Sum-Rate for Multiple-Unicasts

    Full text link
    We study upper bounds on the sum-rate of multiple-unicasts. We approximate the Generalized Network Sharing Bound (GNS cut) of the multiple-unicasts network coding problem with kk independent sources. Our approximation algorithm runs in polynomial time and yields an upper bound on the joint source entropy rate, which is within an O(log2k)O(\log^2 k) factor from the GNS cut. It further yields a vector-linear network code that achieves joint source entropy rate within an O(log2k)O(\log^2 k) factor from the GNS cut, but \emph{not} with independent sources: the code induces a correlation pattern among the sources. Our second contribution is establishing a separation result for vector-linear network codes: for any given field F\mathbb{F} there exist networks for which the optimum sum-rate supported by vector-linear codes over F\mathbb{F} for independent sources can be multiplicatively separated by a factor of k1δk^{1-\delta}, for any constant δ>0{\delta>0}, from the optimum joint entropy rate supported by a code that allows correlation between sources. Finally, we establish a similar separation result for the asymmetric optimum vector-linear sum-rates achieved over two distinct fields Fp\mathbb{F}_{p} and Fq\mathbb{F}_{q} for independent sources, revealing that the choice of field can heavily impact the performance of a linear network code.Comment: 10 pages; Shorter version appeared at ISIT (International Symposium on Information Theory) 2015; some typos correcte

    Optimal Staged Self-Assembly of General Shapes

    Get PDF
    We analyze the number of tile types tt, bins bb, and stages necessary to assemble n×nn \times n squares and scaled shapes in the staged tile assembly model. For n×nn \times n squares, we prove O(logntbtlogtb2+loglogblogt)\mathcal{O}(\frac{\log{n} - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(logntbtlogtb2)\Omega(\frac{\log{n} - tb - t\log t}{b^2}) are necessary for almost all nn. For shapes SS with Kolmogorov complexity K(S)K(S), we prove O(K(S)tbtlogtb2+loglogblogt)\mathcal{O}(\frac{K(S) - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(K(S)tbtlogtb2)\Omega(\frac{K(S) - tb - t\log t}{b^2}) are necessary to assemble a scaled version of SS, for almost all SS. We obtain similarly tight bounds when the more powerful flexible glues are permitted.Comment: Abstract version appeared in ESA 201

    Note on the upper bound of the rainbow index of a graph

    Full text link
    A path in an edge-colored graph GG, where adjacent edges may be colored the same, is a rainbow path if every two edges of it receive distinct colors. The rainbow connection number of a connected graph GG, denoted by rc(G)rc(G), is the minimum number of colors that are needed to color the edges of GG such that there exists a rainbow path connecting every two vertices of GG. Similarly, a tree in GG is a rainbow~tree if no two edges of it receive the same color. The minimum number of colors that are needed in an edge-coloring of GG such that there is a rainbow tree connecting SS for each kk-subset SS of V(G)V(G) is called the kk-rainbow index of GG, denoted by rxk(G)rx_k(G), where kk is an integer such that 2kn2\leq k\leq n. Chakraborty et al. got the following result: For every ϵ>0\epsilon> 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connection, where the bound depends only on ϵ\epsilon. Krivelevich and Yuster proved that if GG has nn vertices and the minimum degree δ(G)\delta(G) then rc(G)<20n/δ(G)rc(G)<20n/\delta(G). This bound was later improved to 3n/(δ(G)+1)+33n/(\delta(G)+1)+3 by Chandran et al. Since rc(G)=rx2(G)rc(G)=rx_2(G), a natural problem arises: for a general kk determining the true behavior of rxk(G)rx_k(G) as a function of the minimum degree δ(G)\delta(G). In this paper, we give upper bounds of rxk(G)rx_k(G) in terms of the minimum degree δ(G)\delta(G) in different ways, namely, via Szemer\'{e}di's Regularity Lemma, connected 22-step dominating sets, connected (k1)(k-1)-dominating sets and kk-dominating sets of GG.Comment: 12 pages. arXiv admin note: text overlap with arXiv:0902.1255 by other author
    corecore