2,019 research outputs found

    Continuity bounds on the quantum relative entropy

    Full text link
    The quantum relative entropy is frequently used as a distance, or distinguishability measure between two quantum states. In this paper we study the relation between this measure and a number of other measures used for that purpose, including the trace norm distance. More precisely, we derive lower and upper bounds on the relative entropy in terms of various distance measures for the difference of the states based on unitarily invariant norms. The upper bounds can be considered as statements of continuity of the relative entropy distance in the sense of Fannes. We employ methods from optimisation theory to obtain bounds that are as sharp as possible.Comment: 13 pages (ReVTeX), 3 figures, replaced with published versio

    Witnessing entanglement by proxy

    Get PDF
    Entanglement is a ubiquitous feature of low temperature systems and believed to be highly relevant for the dynamics of condensed matter properties and quantum computation even at higher temperatures. The experimental certification of this paradigmatic quantum effect in macroscopic high temperature systems is constrained by the limited access to the quantum state of the system. In this paper we show how macroscopic observables beyond the energy of the system can be exploited as proxy witnesses for entanglement detection. Using linear and semi-definite relaxations we show that all previous approaches to this problem can be outperformed by our proxies, i.e. entanglement can be certified at higher temperatures without access to any local observable. For an efficient computation of proxy witnesses one can resort to a generalized grand canonical ensemble, enabling entanglement certification even in complex systems with macroscopic particle numbers.Comment: 22 pages, 8 figure

    Effective interactions and large deviations in stochastic processes

    Get PDF
    We discuss the relationships between large deviations in stochastic systems, and "effective interactions" that induce particular rare events. We focus on the nature of these effective interactions in physical systems with many interacting degrees of freedom, which we illustrate by reviewing several recent studies. We describe the connections between effective interactions, large deviations at "level 2.5", and the theory of optimal control. Finally, we discuss possible physical applications of variational results associated with those theories.Comment: 12 page

    First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories

    Full text link
    We investigate the dynamics of kinetically constrained models of glass formers by analysing the statistics of trajectories of the dynamics, or histories, using large deviation function methods. We show that, in general, these models exhibit a first-order dynamical transition between active and inactive dynamical phases. We argue that the dynamical heterogeneities displayed by these systems are a manifestation of dynamical first-order phase coexistence. In particular, we calculate dynamical large deviation functions, both analytically and numerically, for the Fredrickson-Andersen model, the East model, and constrained lattice gas models. We also show how large deviation functions can be obtained from a Landau-like theory for dynamical fluctuations. We discuss possibilities for similar dynamical phase-coexistence behaviour in other systems with heterogeneous dynamics.Comment: 29 pages, 7 figs, final versio

    Utility indifference pricing with market incompleteness

    Get PDF
    Utility indifference pricing and hedging theory is presented, showing how it leads to linear or to non-linear pricing rules for contingent claims. Convex duality is first used to derive probabilistic representations for exponential utility-based prices, in a general setting with locally bounded semi-martingale price processes. The indifference price for a finite number of claims gives a non-linear pricing rule, which reduces to a linear pricing rule as the number of claims tends to zero, resulting in the so-called marginal utility-based price of the claim. Applications to basis risk models with lognormal price processes, under full and partial information scenarios are then worked out in detail. In the full information case, a claim on a non-traded asset is priced and hedged using a correlated traded asset. The resulting hedge requires knowledge of the drift parameters of the asset price processes, which are very difficult to estimate with any precision. This leads naturally to a further application, a partial information problem, with the drift parameters assumed to be random variables whose values are revealed to the hedger in a Bayesian fashion via a filtering algorithm. The indifference price is given by the solution to a non-linear PDE, reducing to a linear PDE for the marginal price when the number of claims becomes infinitesimally small
    • …
    corecore