819 research outputs found

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n−2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea

    Decompositions into subgraphs of small diameter

    Full text link
    We investigate decompositions of a graph into a small number of low diameter subgraphs. Let P(n,\epsilon,d) be the smallest k such that every graph G=(V,E) on n vertices has an edge partition E=E_0 \cup E_1 \cup ... \cup E_k such that |E_0| \leq \epsilon n^2 and for all 1 \leq i \leq k the diameter of the subgraph spanned by E_i is at most d. Using Szemer\'edi's regularity lemma, Polcyn and Ruci\'nski showed that P(n,\epsilon,4) is bounded above by a constant depending only \epsilon. This shows that every dense graph can be partitioned into a small number of ``small worlds'' provided that few edges can be ignored. Improving on their result, we determine P(n,\epsilon,d) within an absolute constant factor, showing that P(n,\epsilon,2) = \Theta(n) is unbounded for \epsilon n^{-1/2} and P(n,\epsilon,4) = \Theta(1/\epsilon) for \epsilon > n^{-1}. We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, R\"odl, Ruci\'nski, and Szemer\'edi.Comment: 18 page

    Triangle-free subgraphs of random graphs

    Get PDF
    Recently there has been much interest in studying random graph analogues of well known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n,p)G(n,p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n,p)G(n,p) with minimum degree at least (25+o(1))pn\big(\frac{2}{5} + o(1)\big)pn is O(p−1n)\mathcal O(p^{-1}n)-close to bipartite, and each spanning triangle-free subgraph of G(n,p)G(n,p) with minimum degree at least (13+ε)pn(\frac{1}{3}+\varepsilon)pn is O(p−1n)\mathcal O(p^{-1}n)-close to rr-partite for some r=r(ε)r=r(\varepsilon). These are random graph analogues of a result by Andr\'asfai, Erd\H{o}s, and S\'os [Discrete Math. 8 (1974), 205-218], and a result by Thomassen [Combinatorica 22 (2002), 591--596]. We also show that our results are best possible up to a constant factor.Comment: 18 page

    Linear Codes are Optimal for Index-Coding Instances with Five or Fewer Receivers

    Full text link
    We study zero-error unicast index-coding instances, where each receiver must perfectly decode its requested message set, and the message sets requested by any two receivers do not overlap. We show that for all these instances with up to five receivers, linear index codes are optimal. Although this class contains 9847 non-isomorphic instances, by using our recent results and by properly categorizing the instances based on their graphical representations, we need to consider only 13 non-trivial instances to solve the entire class. This work complements the result by Arbabjolfaei et al. (ISIT 2013), who derived the capacity region of all unicast index-coding problems with up to five receivers in the diminishing-error setup. They employed random-coding arguments, which require infinitely-long messages. We consider the zero-error setup; our approach uses graph theory and combinatorics, and does not require long messages.Comment: submitted to the 2014 IEEE International Symposium on Information Theory (ISIT
    • …
    corecore